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Compliant Prosthetic Knee Extension Aid: A Finite Elements Analysis Investigation 
of Proprioceptive Feedback During the Swing Phase of Ambulation 

 
 

Adam Daniel Roetter 
 

ABSTRACT 
 
 Compliant mechanisms offer several design advantages which may be exploited 

in prosthetic joint research and development: they are light-weight, have low cost, are 

easy to manufacture, have high-reliability, and have the ability to be designed for 

displacement loads.  Designing a mechanism to perform optimally under displacement 

rather than force loading allows underlying characteristics of the swing phase of gait, 

such as the maximum heel rise and terminal swing to be developed into a prosthetic knee 

joint.  The objective of this thesis was to develop a mechanical add-on compliant link to 

an existing prosthetic knee which would perform to optimal standards of prosthetic gait, 

specifically during the swing phase, and to introduce a feasible method for increasing 

proprioceptive feedback to the amputee via transferred moments and varying surface 

tractions on the inner part of a prosthetic socket.  A finite elements model was created 

with ANSYS to design the prosthetic knee compliant add-on and used to select the 

geometry to meet prosthetic-swing criteria.  Data collected from the knee FEA model was 

used to apply correct loading at the knee in a SolidWorks model of an above-knee 

prosthesis and residual limb.  Another finite element model was creating using 

COSMOSWorks to determine the induced stresses within a prosthetic socket brought on 
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by the compliant link, and then used to determine stress patterns over 60 degrees of knee 

flexion (standard swing).  The compliant knee add-on performed to the optimal resistance 

during swing allowing for a moment maxima of 20.2 Newton-meters (N-m) at a knee 

flexion of 62 degrees.  The moments applied to the prosthetic socket via the compliant 

link during knee flexion and extension ranged from 5.2 N-m (0 degrees) in flexion, to 

20.2 N-m (62 degrees) in extension and induced a varying surface tractions on the inner 

surface of the socket over the duration, thus posing a possible method of providing 

proprioceptive feedback via surface tractions.  Developing a method for determining the 

level of proprioceptive feedback would allow for less expensive and more efficient 

methods of bringing greater control of a prosthesis to its user. 
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Chapter 1  Overview 

 

The objective of this thesis was to develop a compliant linkage add-on as a design 

specialization to the Otto Bock 3R21 frame (Figures 1-1 and 1-2) and to test the 

hypothesis that the extension moments brought about by the compliant extension aid 

offer a method of providing proprioceptive feedback to the amputee via variable stress 

patterns on the inner part of the prosthetic socket over the swing phase of the gait cycle. 

This hypothesis was tested by developing a Computer Assisted Drawing (CAD) and 

Finite Element (FE) model of the knee with the bistable compliant extension aid (Figure 

1-3), a prosthetic socket and residual limb with simplified geometry. Knee flexion (0-90 

degrees) and the resulting forces and moments were analyzed with ANSYS, and the 

resulting tractions on the socket analyzed using SolidWorks (COSMOSWorks).   

The criterion we adopted for analyzing proprioception was that the tractions 

applied to the inner part of the socket showed distinct variation over the swing phase, 

remained tolerable by the user and did not cause failure of the polypropylene socket. This 

criterion provided the basis for analytical work but should be refined through clinical 

testing. 
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Figure 1-1. Photograph of Otto Bock 3R21 Modular 4-Bar Linkage Knee Joint 

 

 
Figure 1-2. CAD Model of Otto Bock 3R21 Modular 4-Bar Linkage Knee Joint 

 

 
Figure 1-3. Otto Bock 3R21 with Bistable Compliant Extension Aid Concept 
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1.1 Background 

The introduction of compliant mechanism technology offers several advantages in 

prosthetic joint design: low friction and wear, low part count, lighter weight, high 

reliability and efficient manufacturing and assembly.  These advantages, as well as the 

ability to design for displacement loading, fit compliant mechanisms well into the design 

of an efficient prosthetic knee during swing. 

 

 

1.1.1 Background – History of Prosthetics and the Prosthetic Knee  
  

Prosthetics are said to have existed from the times of the ancient Egyptians.  

Prosthetics were used in many applications: function, cosmetic appearance and most 

important to the ancient Egyptians, psycho-spiritual sense of being whole.  It was feared 

by many that when an amputation was performed the individual would be left un-whole 

in the afterlife.  Once performed, the amputated limb was buried until the individual 

passed when it would be placed with the body so as to make them whole for the afterlife.  

One of the earliest known examples of a cosmetic prosthesis date back to the 18th dynasty 

of ancient Egypt where a mummy was found with a prosthetic toe made of leather and 

wood (Figure 1-4).  Greek and Roman civilizations are sometimes credited for creating 

prostheses for rehabilitation aids. [11] 

 
Figure 1-4. Prosthetic Toe in Cairo Museum 

[11] 
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Modern prostheses are said to have originated from a man known as Ambroise 

Paré (Figure 1-5).  The French surgeon contributed to the origination and perfection of 

the amputation procedure itself and among the first to show interest in the design of a 

functional prosthesis.  Paré instructed a Parisian armor maker (Le petit Lorrain) to 

construct a metal above-knee prosthesis which consisted of a locking knee joint as well as 

an ankle joint. His prosthesis weighed 7 kg and was only suitable for equestrians.  

Functional prostheses were not used at that time mainly because the distal end of the 

residual limb could not be loaded without damage; this limited people to using crutches, 

peg legs or even crawling as means of locomotion. [29]  

 
Figure 1-5. Ambroise Pare: Founder of Prosthetics 

[11] 

 
 After 1816, functional wooden prostheses were built which consisted of a 

mechanism which synchronized the motion of the knee and ankle joints.  This ingenious 

mechanism was invented by James Potts, who also is credited with the use of the trumpet 

socket.  This Total-Surface-Bearing-type socket along with the joint mechanism was 

made famous by the Count of Uxbridge, also known as the Marquees of Anglesey who 

lost his leg in the Battle of Mont St. Jean in 1815. [29] 
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 Over the course of history, large scale wars have directed government interests 

towards research and development of more efficient and functional prostheses.  

Following World War I, materials such as aluminum and rubber were being tested as 

alternative materials which led to the current research on space-age materials and 

mechanism designed to improve user comfort, mechanical efficiency, and cosmetic 

symmetry.  

 

 

1.1.2 Background – Compliant Mechanisms and Current Research 
 

Compliant mechanisms are mechanisms that gain some or all of their motion from 

the deflection of flexible segments [8].  Compliant mechanisms store and release strain 

energy as they move.  Input forces are required to store strain energy and output forces 

can be provided when strain energy is released.  Most compliant mechanisms have an 

unstressed (or minimum energy) state which they naturally assume. In a bistable 

mechanism (a mechanism which contains two stable equilibrium positions), the 

mechanism has two distinct locally minimum energy states. A bistable mechanism will 

oppose forces that drive the mechanism from either one of the stable positions.  Bistable 

mechanisms make sense for prosthetic knees because they offer two home positions 

(straight and bent) for the leg. The straight-leg position is the preferred home position 

while walking or standing, and the bent-leg position is the preferred home position when 

sitting.  Furthermore, the change in stored strain energy between stable points offers a 

characteristic moment-rotation profile or ‘feel’ to leg motion, thus increasing user 

proprioception over the position of their knee and lower leg.  Other potential advantages 
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of compliant mechanisms are the lower costs of manufacturing and assembly through 

lower part count as well as the reduction of weight when compared with rigid-body 

counterparts.   

Compliant mechanisms are used by the public everyday, and a few are so 

commonplace that their compliance is considered unremarkable. The paperclip and 

shampoo bottle cap are examples of such ‘unremarkable’ compliant mechanisms.  The 

paperclip utilizes stored strain energy to hold paper together by attempting to return to its 

original shape.  The shampoo bottle incorporates small plastic flexures known as living 

hinges in the cap.  These are some of the simplest forms of compliant mechanisms.   

 
Figure 1-6. Common Compliant Mechanisms 

 
 
Other more advanced mechanisms can be designed compliant or can be 

transformed via compliant mechanism synthesis.  The crimping device shown in Figure 

1-7 (a) is very similar to its rigid-body counterpart (Figure 1-7 b).  The locking jaws 

serve similar functions, while the weaker material used to construct the compliant version 

limits its applicability.  The plastic construction of the compliant crimping device limits 

its maximum output force, and its compliant members store some of the work provided 

by the input force in the form of strain energy making less work available for output at 

the jaws.  As shown, the design of the crimping device was based upon a rigid body 

mechanism which has four separate parts, but is realized using a single monolithic part.   
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(a) (b) 

Figure 1-7. Crimping Mechanism, Compliant & Rigid-Body Counterpart 
Courtesy of the Compliant Mechanisms Research Group (CMR) at Brigham Young University 

 

A reduction in part count is one of the most noticeable differences between 

compliant mechanisms and their rigid-body counterparts.  The Compliant Mechanisms 

Research group at Brigham Young University designed and prototyped an overrunning 

clutch using only two links and a pin. Figure 1-8 (a) shows the latter, while (b) depicts its 

rigid-body counterpart which has a significant increase in part count. 

 

 
(a) (b) 

Figure 1-8. Overrunning Clutch, Compliant & Rigid-Body Counterpart 
Courtesy of the Compliant Mechanisms Research Group (CMR) at Brigham Young University 
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Compliant mechanisms have advantages and disadvantages when compared with 

their rigid-body counterparts, whose importance depends upon the requirements of a 

given application.  For example, some applications have requirements for high precision, 

some for high strength, and some require both.  Both of these requirements have been 

demonstrated in compliant mechanism design.  For example, the concept of high strength 

has been demonstrated in High Compression Compliant Mechanisms (HCCMs) by 

Alexandre Guèrinot in his design of a compliant prosthetic knee [5] (discussed in the next 

section). High precision mechanisms have been applied to Micro-Electromechanical 

systems (MEMS).  The prosthesis industry is a recent target for compliant mechanism 

designs, which are discussed in the next section.  

 

 

1.1.3 Background – Compliant Mechanism Prosthetic Joint Research 
 

Compliant mechanisms have made the transition to prosthetics joint research.  For 

example, compliant prosthetic knees have been researched at The University of South 

Florida under the direction of Dr. Craig Lusk [10] and at Brigham Young University’s 

CMR under Dr. Larry Howell [5].  A compliant prosthetic ankle was designed and 

analyzed at BYU by Jason Wiersdorf [32] under Dr. Howell and Dr. Magleby.   

The introduction of compliant mechanisms under loading more appropriate to 

rigid-body mechanisms is a challenging task and must be done under heavy scrutiny.  

Prosthetic knees and ankles see very large compressive loads which are not suited for 

compliant mechanisms.  Theories have been developed to alleviate these major design 

issues and are discussed. 
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Prosthesis design and engineering has made transitions from new materials to 

exotic mechanism design (including CPU control), and has traditionally been constructed 

to withstand any and all buckling of members comprising the mechanisms.  Compliant 

mechanism design is counter to the concept of the rigid structure as they gain all of their 

motion from the bending/buckling of the compliant members.  Nature employs compliant 

structures to provide both movement and strength.  Ligaments are made of flexible, 

fibrous tissue which binds bones together, and helps form the joints necessary for 

locomotion and movement.   A common misperception is that strength and safety 

necessarily go hand-in-hand with stiffness.   This is one reason why the prosthesis 

industry is dominated by rigid-body mechanisms which use pins and friction rather than 

compliant parts. The concept that stiffness equals strength is, in fact, incorrect as a 

healthy biological knee shows.  It is quite contrary to the ‘stiffness equals safety’ 

argument since as a knee gets stiffer, a decrease in function is noticed (i.e. arthritis).  

“This design preference can largely be attributed to the long legacy of design for force 

loads rather than design for displacement loads that has influenced the engineering 

community” [5]. 

Prosthetic knees are designed to meet strict safety criteria and must be able to 

withstand high compressive loading.  On the other hand, compliant mechanisms are more 

typically designed under tensile loads rather than the compressive ones that the knee joint 

sees.  Work done by Alexandre Guèrinot [5,6] with High Compression Compliant 

Mechanisms (HCCMs) have opened new doors to the applicability of compliant 

mechanisms to high compression situations similar to those faced in the prosthetic knee  
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joint.  He laid the groundwork for design of compliant mechanisms which can carry high 

compressive loading by using two design principles: inversion and isolation.    

Inversion is the ability of the compliant mechanism to ‘invert’ a compressive load 

into a tensile load by the design of the mechanism’s geometry.  “The concept of inversion 

builds on the proposition of tensurial pivots, which are flexures loaded in tension” [5].  

The geometry of the rigid links invert the top and bottom of the mechanism thus 

transforming the load more appropriately for a compliant mechanism.  Figure 1-9 depicts 

one of Guèrnot’s inversion concepts of a knee prototype.  Notice the top and bottom 

brackets invert the loading and thus allow the compliant segments to see a tensile load 

rather than compressive.     

 

 
   (a)      (b) 

Figure 1-9. Guèrinot’s Inversion HCCM Concept 
(a) Compressive Configuration, (b) Inverted Tensile Configuration [5] 

 
 The second principle Guèrinot discusses is the concept of isolation.  Isolation is 

the ability to remove the load from the flexible segments and redirect it through the rigid-

body segments.  Isolation can be applied when compressive loads are in alignment.  In 

prosthetic knees, isolation will allow the compliant knee to withstand the stance loading 
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while ‘feeling’ rigid and ‘strong’ to the user while at the same time during motion the 

compliance is unchanged and fully effective as a compliant mechanism.  The true 

advantage of isolation is to harness the stiffness of the rigid body mechanism while still 

utilizing the flexibility of the compliant mechanism, thus increasing the overall 

compressive load capability of the compliant mechanism.    

 

 
Figure 1-10. Guèrinot’s Isolation HCCM Concept 

[5] 
 
 Guèrinot’s design of a compliant knee joint included these concepts of inversion 

and isolation and was successful in supporting heavy compressive loads.  Under testing, 

the knee, shown in Figure 1-11, was able to withstand close to 700 lbf in compression 

with roughly a mere 0.14-0.15 inches of displacement [5].  The success of a compliant 

mechanism being able to hold such high levels of compressive loads has been tested 

against the inversion and isolation theories and proved to be highly successful.  These 

HCCM concepts are crucial for a fully compliant knee joint to be able to withstand the 

loading during the stance phase of gait (discussed later). 
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Figure 1-11. Guèrinot’s Tested Inverted Cross-Axis Flexural Pivot Knee Prototype 

[5] 
 

 Further compliant knee joint research was conducted at the University of South 

Florida by Sebastian Mahler, under the direction of Dr. Craig Lusk [10].  Mahler 

designed and prototyped a pediatric prosthetic knee that introduced compliance into the 

mechanism shown in Figure 1-12.  The major influential factor driving the design of a 

compliant pediatric prosthetic knee was the overall reduction in weight allowing the child 

to wear their prosthesis for longer periods of time.  Children with above-knee 

amputations are typically given a peg leg to learn to walk on.  The prosthetic leg must be 

shorter than the sound limb in order to clear the ground during swing, but this creates a 

gait pattern similar to walking with “one foot constantly in a hole” [10].  These major gait 

deviations are exacerbated later in life when learned at an early stage.  The lighter knee, 

and thus a lighter prosthesis, allows the child to wear their prosthesis for longer periods 

of time without the discomfort of heavier prostheses.  With longer wear, the child can 

learn to walk with a standard polycentric knee similar to that of an adult prosthesis, thus 

lowering or eliminating the gait deviations early.     
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Figure 1-12. Mahler’s Pediatric Prosthetic Knee Prototype 

[10] 
 

Mahler was able to analyze the motion of the knee prototype by using nonlinear 

finite elements analysis and the calculation of the mechanisms instant center of rotation.  

The reaction forces and resultant mechanism’s stresses were also analyzed under 

deflections from 0° to 120°.  Mahler’s work focussed heavily on the concept of the 

instantaneous center of rotation.  The instantaneous center (IC) of rotation is defined as a 

‘key point’ where the body rotates about at a particular instant in time.  This IC is at rest 

and is the only point at rest in the body at this particular instant.  Mahler explains how the 

instant center of rotation and the stability of a prosthetic knee go hand in hand.  A ‘well 

placed’ IC can give the prosthesis adequate toe clearance as well as provide the necessary 

trade-off from stability to control (discussed in detail later in the chapter).  The 

instantaneous center of rotation is crucial point of design when considering polycentric 

prosthetic knee mechanisms, a mechanism with a varying IC through rotation.  For a 

simpler single axis knee mechanism, the IC is constant and does not lend advantages such 

as those listed above.   
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Figure 1-13. Mahler’s Knee Instantaneous Center 

[10] 
 

Mahler explains the four most important design characteristics for a pediatric 

prosthetic knee: toe clearance, stability, lightweight and adjustability.  The toe clearance, 

and stability were analyzed under the nonlinear FEA, while the lightweight requirement 

was met with the compliant mechanism design.  Adjustability was one of the foremost 

design challenges met with Mahler’s pediatric compliant knee prototype.  Adjustability of 

a prosthesis holds a high level of importance based upon the fact that no two people are 

exactly alike.  Size and shape differences vary the gait pattern slightly from one 

individual to another, thus requiring the need for prosthesis adjustability.  Mahler posed a 

design which could adjust the required torque necessary to initiate motion of the knee, 

thus allowing for differences in the child’s activity level.  The latter goes so far as to 

allow ‘on-site’ adjustability allowing the prosthesis to be set for standard walking and to 

be adjusted immediately for a higher level of activity.   
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The knee was evaluated at different compliant segment angles, i.e. at different 

levels of adjustments.  The stresses and force data was evaluated for the mechanism at 

these different points.  Stresses appeared to be higher than the materials yield strength 

and thus a method for removing or redirecting these stresses is needed in future work.  

These stresses brought about by prescribed compressive loading could be alleviated 

utilizing one or both of Guèrinot’s theories, inversion and isolation, thus improving and 

perhaps perfecting a pediatric compliant prosthetic knee. 

Compliant joint research also evaluated a prosthetic ankle joint with three degrees 

of freedom (the knee consists of just one degree of freedom).  Jason Wiersdorf researched 

this project under the direction of Dr. Magleby at BYU’s CMR [32].  While this project’s 

emphasis is different than this thesis’s, it is important to note that prosthesis research has 

been developed for other applications than the knee joint. 

 
Figure 1-14. Wiersdorf’s Modular Experimental Research Ankle (MERA) 

[32] 
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1.2 Phases of Gait 
 
 Gait, or the means of forward locomotion, has been standardized and broken into 

two distinct phases, stance and swing.  Popular conventions have denoted particular 

points in the gait cycle by percentages.  These percentages follow symmetry with one 

heel strike of a limb denoted 0% and the heel strike of the same limb as 100%.  Each 

phase of gait can thus be characterized by a percentage of the cycle; stance accounts for 

the majority of the gait cycle with 60%, and swing owning the remaining 40%.  Each 

phase of gait holds characteristics unique and easily definable.  [30] 

Stance includes four ‘sub-phases’: loading, midstance, terminal stance and pre-

swing or toe-off.  Loading refers to the portion of stance just at and following heel strike 

when the alignment of the hip, knee and ankle allow loading of the foot.  Loading 

accounts for the first 10% of gait and is also defined as the period from heel strike to 

contralateral toe-off, depicted in Figure 1-15 (a & b).  Some include a separate sub-

section just before loading and label it the initial heel strike.  Midstance refers to the 

loading of the full body weight on one leg, the knee is slightly bent and the ankle is in the 

neutral position, Figure 1-15 (c).  Terminal stance is the progression of the weight line 

through the ball of the foot, anterior to the knee and posterior to the hip.  Terminal stance 

also includes what some have labeled heel-off from observational analysis and is depicted 

in Figure 1-15 (d).  Midstance and terminal stance account for the next 40% of the gait 

cycle (10%-50% respectively), and overall is characterized by an external rotation of the 

entire lower limb with respect to the line of progress.  Pre-swing, commonly known as 

toe-off is the portion of stance when the weight line passes from the ball of the foot to the 

toes, causing the knee to bend and the weight line running closer through the knee and 
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hip together, Figure 1-15 (e).  Toe-off ends at toe-lift and thus begins the next portion of 

the gait cycle, the swing phase. [19,30] 

 
                 (a)            (b)                   (c)   (d)  (e) 

 
Figure 1-15. Sub-Phases of Stance 

Mahler [10] 
Red line is the weight line, and the black lines represent upper and lower leg and foot 

 
Just as the stance phase is broken into sub-phases, so is the swing phase.  There 

are three distinct sub-phases during swing: initial swing, mid-swing and terminal swing, 

shown in Figure 1-16.  The swing phase is 40% of the entire cycle and is critical when 

analyzing the dynamics of gait.  The initial swing begins following toe-off of the stance 

phase and continues until the knee reaches its maximum flexion of 60 degrees.  The 

primary purpose for the initial swing is to clear the foot, meaning that tripping or 

stubbing of the toe is avoided, and prepare for swing.  Clearance is achieved through 

flexion of the hip, knee and ankle.  Following maximum knee flexion and the initial 

swing phase, mid-swing begins from maximum knee flexion until the tibia is 

perpendicular to the ground.  Finally, terminal swing finishes the swing phase from 

perpendicular tibia location to initial heel contact with the ground, thus starting the stance 

phase again. 
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Figure 1-16. Swing Phase of Gait 

 

Normal gait holds key features which must be mimicked in prosthetic design.  To 

prevent excessive heel rise and to initiate the forward swing of the leg, the quadriceps 

contract before toe-off.  To dampen forward motion of the leg at terminal swing and 

control where the foot is just prior to heel strike, the hamstring muscles become active.  

In order to achieve the latter, prostheses have introduced several design features 

including constant friction, hydraulic and pneumatic dampers as well as other high 

technological options such as CPU control.  Toe clearance during swing is also a 

challenge; during normal gait, ankle dorsiflexion gives clearance but in the case of an 

amputee, the muscles are not present and the knee prosthesis or combination of knee and 

ankle prostheses must provide the necessary clearance to prevent stubbing the toe and 

tripping.  These characteristics of normal gait must be included in the engineering of a 

prosthesis that is fully suitable to sustain as close to normal gait as possible. 

 

 

1.3 Knee Disarticulation 
 
A disarticulation is the amputation of a limb through the joint without cutting of 

the bone.  The disarticulation of the knee is a surgery that is done between bone surfaces 

removing the tibia and fibula while either keeping or removing the knee cap (which is the 
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judgment of the surgeon).  Knee disarticulations are considered somewhat rare and 

account for only about two percent of major limb loss within North America.  The first 

knee disarticulation in the United States was performed in 1824 and since has received 

strong support as well as strict skepticism. [27] 

 

 

1.3.1 Advantages and Disadvantages of Knee Disarticulation 
 
Disadvantages of the knee disarticulation lie within function and cosmetic 

rationale.  Earlier in the development of the knee and ankle disarticulations (1800’s) a 

drop in mortality rates were of utmost importance as the disarticulation decreased 

infection, bleeding and surgical shock.  Modern day healthcare and surgical procedures 

have decreased the aforementioned mortality rates for all amputations and therefor can no 

longer be considered the deciding factor in the surgeon’s decision.  Why then, if the knee 

disarticulation was so popular when first introduced is there skepticism now?  Primarily, 

complaints have been made based upon the prosthesis fit and the bulbous distal end of the 

residuum.  A particular paper written in 1940 by Dr. S. Perry Rogers, an orthopedic 

surgeon with a knee disarticulation (from a war injury), highlighted the differing opinions 

on the amputation.  He based the divided opinion on “erroneous conclusions by some 

physicians and prosthetists” [26], noting the Association of Artificial Limb 

Manufacturers of America claiming that knee disarticulations were “impeding to 

successful prosthesis” [26].  Objecting to this statement, Dr. Rogers claimed that it was 

“no longer grounded in fact” [26].  The claim that the bulbous shape of the distal end of 

the residual limb was a problem to the patient was also addressed by Dr. Rogers whose 
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photographic evidence proved that the femoral lower extremity proved to assist in the 

lifting of the prosthesis as well as increase control over the rotation.  Still, many people 

object to the disarticulation based upon cosmetic reasoning that the bulbous end of the 

residual limb was unappealing.  The bulbous end of the residuum caused issues relating 

to function as well; creating a socket with the correct fit was challenging, even to the 

point that some prosthetists were reluctant to make one fearing an unsuccessful fitting.  

Dr. Rogers commented on this as well stating that the bulbous end essentially makes the 

socket “self-suspending” [26].  Amongst the cosmetic downside of the knee 

disarticulation, many people with the amputation note the longer thigh length of the 

residuum with prosthesis over the sound leg.  The residuum, distal padding, socket, 

connector and knee unit add a few inches to the overall length thus creating a non-

symmetric appearance while sitting.  Four-bar prosthetic knees (polycentric) reduce the 

overall length of the amputated limb, but not completely.  Figure 1-17 depicts the notable 

differences in distance from the distal end to the prosthetic knee center (note the right 

picture is of a polycentric knee).  Sitting is cosmetically asymmetric, but standing also 

has its cosmetic symmetry issues that some dislike.  When standing the knee center of the 

residual limb is a few inches closer to the ground which some say is a problem.  As noted 

by Dr. Smith, “as long as the prosthesis is designed so that the total length of both legs is 

equal and the hips remain level, the back can be straight, and for many there is no 

discomfort” [26].  Noting that over sixty years has past since the release of Dr. Rogers’ 

paper, controversy over the drawbacks of the knee disarticulation still remain and are 

discussed today.   
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      (a)                 (b) 

Figure 1-17. Distances from Distal End to Prosthetic Knee Center 
(a) Higher transfemoral (TF) amputation (b) lower TF amputation with polycentric knee 

Image by USF College of Medicine School of Physical Therapy and Rehabilitation Sciences 
 [7] 

 
Advantages of the knee disarticulation over the transfemoral counterpart lie 

within both functional and surgical rationale.  Many individuals unfortunate enough to 

require lower limb amputation near the knee joint are fortunate enough to hold the option 

of a transtibial (below-knee) amputation thus leaving the knee intact.  For some, there is 

no choice but to amputate higher up the thigh and through the femur.  Though rare in 

comparison and controversial, the knee disarticulation may be the best option for several 

groups of individuals: 

• Children 

• Cancer/Trauma Patients 

• Spasticity Patients 

Children benefit from the knee disarticulation over transfemoral simply by 

preserving the growth plates located at the ends of the femur.  The bottom growth plate 

accounts for the majority of femur’s growth and with the leg being amputated through the 

joint the plate is preserved and the femur able to grow through the child’s life.  If the 

child undergoes a transfemoral amputation, the residual limb though long when 
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amputated will result in a shorter residuum as an adult.  The growth of the femur without 

the growth plate would not be able to keep pace with the sound leg and thus result in a 

short residuum during adulthood.  The knee disarticulation also eliminates the childhood 

condition of painful bone overgrowth, which is a result of new bone growth that forms a 

spike or bone spur at the amputated end after the bone is transected [26].  Cancer or 

trauma patients undergo a knee disarticulation if the tibia cannot be saved and the soft 

tissue that would be located at the distal end is good for “padding” [26].  Patients 

suffering from problems with spasticity or contractures, which typically are results of 

spinal cord or brain injuries, can leave their legs in a bent position and are susceptible to 

being fixed in that position.  In these particular cases, “the knee disarticulation can offer 

some unique advantages over either a transtibial or transfemoral (above-knee) 

amputation” [26].   

 One of the most notable advantages of the knee disarticulation over transfemoral 

is the remaining muscle that is left intact.  A full-length femur is left and the thigh 

muscles tend to be stronger because they are not transected in the middle of the muscle 

but rather at the end where there is fascia (connecting tissue).  Muscles that are dissected 

mid-length tend to become swollen, need more time to heal, retract and never quite regain 

the strength. The knee disarticulation is typically an end loading (weightbearing at the 

distal end) amputation and provides a long mechanical lever-arm with the maximum 

amount of muscle present to provide necessary moments to control the prosthesis 

adequately (this is discussed further in section 1-4). 
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1.4 Prosthetic Knee Inherent Stability 
 

To better understand the required stability needed for a particular patient (over 

another patient with a different level of transfemoral amputation), the concept of torque 

must be mastered.  In physics, torque, also known as a moment, is the measure of “the 

tendency of a force to rotate an object about some axis (center)” [7].  Torque can be 

quantified by the product of a force and the length of the lever arm to which it is applied 

to the body.  In simpler terms, torque is equal to force times distance.  The force applied 

on a residual limb is directed and applied by the remaining muscles of the residuum.  The 

length of the ‘lever arm’ is the length of the femur (with an above knee amputation).  It is 

interesting to note that the length of the residual femur affects both the force and lever 

arm because the longer the residuum, the more residual musculature; therefore the length 

of the femur determines the amount of torque a patient can apply and the more control 

they will have.  USF O&P [7] describes an example which illustrates this idea; a short 

transfemoral limb will require a larger prosthesis, thus having a higher mass, and is 

placed at a shorter lever length. 

The concept of “inherent stability” [7] is based upon the type of prosthetic knee 

used and the “alignment or position of the knees COR (Center of Rotation) relative to the 

TKA (trochanter-knee-ankle) weight line.  The type of prosthetic knee determines the 

ability of the prosthesis to allow or withstand buckling, either during swing or stance.  

This is a crucial part of the knee classification, but the concept of control versus stability 

focuses around residuum’s torque capabilities and this idea of alignment.  With a long 

transfemoral amputation (e.g. knee disarticulation), the TKA weight line falls posterior to 

the knees COR and thus is in an unstable position.  With this unstable position, the 
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patient must have the ability to have more control over the prosthesis.  With the greater 

amount of residual musculature, this control is easier than with a shorter transfemoral 

amputation.  Those with the knee disarticulation seem to prefer to have more control over 

their prosthesis rather than have it heavily stable [7].  A shorter transfemoral amputation 

requires more stability then a knee disarticulation as the residuum would have less ability 

to control the prosthesis (less muscle present).  The TKA weight line would need to lie 

anterior to the knee’s COR to withstand rotation during loading thus increasing the 

stability during stance.  Figure 1-18, from a presentation put together by Dr. Jason 

Highsmith and Dr. Jason Kahle [7] depicts the concept of inherent stability versus control 

and how they relate to residual limb lengths. 

  
Figure 1-18. Stability vs. Control 

Image by USF College of Medicine School of Physical Therapy and Rehabilitation Sciences 
[7] 
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Chapter 2  Prosthetic Knee Classifications 
 

 The prosthetic knee market is saturated with over 200 different knee joints from 

dozens of manufacturers and each year that number grows.  With the abundance of knee 

mechanisms it makes it very difficult for the prosthetist to choose the ‘correct’ knee for 

the user as there is typically more than one knee which is appropriate for a particular 

application.  The reason behind such large numbers of knee designs can be attributed to 

two different explanations: designer’s choice and contradictory demands made by users.  

A newly designed prosthetic knee is difficult and expensive to evaluate, typically 

requiring time-consuming experimentation and clinical trials.  Classification of a 

prosthetic knee is a technical process and is done in several different ways.  In this 

chapter, the following classification schemes are described: function-based schemes, 

mechanical-design-based schemes, and schemes based on the level of amputation of the 

user.  The tradeoffs between stability and control are also described.  

 

 

2.1 Classification – Functional  
 

Dr. ir. P.G. van de Veen [29] describes two subcategories under the functional 

classification of knee prostheses:  locking and braking mechanisms.  Each of these types 

has a unique characteristic that makes them more suitable for different environments as  
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well as different levels of user activity.  Table 2-1 summarizes the functional 

classification of knee mechanisms and gives a few examples of each. 

Table 2-1. Functional Classification Examples 
 

Locking: • Continuously Locking 
 • Automatically Locking
 • Geometrically Locking 

 

Brake: • Load-Dependent 
 • Load-Independent 

 
 Locking mechanisms mechanically restrict all motion (while in the locked 

position), regardless of the forces applied (neglecting those which cause mechanical 

failure).  As mentioned, there are three different locking mechanisms which restrict 

flexion.  The first is the continuously locking mechanism which is the simplest form of 

the locking prosthetic knee.  The continuous lock is a manual lock which is enabled or 

disengaged by a user command alone, such as pushing a button.  The second, the 

automatically-locking mechanism, applies restriction through the knee joint when 

triggered by either position, load or during a particular input response (flexion of the 

foot/ankle or other means).  The automatically locking knee also includes a point at 

which the mechanism ‘unlocks’ and is able to flex.  Finally, the geometrically locking 

knee utilizes the knees center of rotation (COR) to lock the mechanism.  The knee is able 

to lock if the knee’s COR lies posterior to the weight line (or load line) during all 

instances and circumstances.  Only when the loading is removed from the knee is it able 

to flex.  Locking knees are worn by those who require the highest level of stability, but 

many who ambulate with such knees develop gait abnormalities similar to the hiking of 
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the hip to compensate for the lack of knee flexion (and thus the inability of the leg to 

shorten through initial swing). 

 Braking mechanisms provide a “flexion-counteracting moment” [29] to prevent 

rapid flexion.  While this applied moment can be large, it will never be infinite and 

therefore cannot prevent motion completely (like that of the locking mechanisms above).  

As listed, two functional braking mechanisms are prominent on the market: load-

dependent and independent brake mechanisms.  The load-dependent braking mechanism 

is a friction brake that exerts a counteracting moment that is proportional to the loading 

on it.  Usually, motion is prevented, but is done so by the equilibrium of forces and not a 

locking mechanism.  The load-independent braking mechanism provides counteracting 

forces that are independent of the applied loading but rather to the speed of rotation 

(flexion).  Load-independent braking knees offer more controlled flexion rather than the 

strict stability offered by the locking mechanisms.  [29] 

 

 

2.2 Classification – Mechanical 
 

The mechanical classification system focuses primarily on the type of linkage-

based mechanism the knee employs.  Prosthetic knees can be broken into three 

mechanical categories: single-axis knee mechanisms, multiple-axis (polycentric) knee 

mechanisms and ‘exotic’ knee mechanisms. 

 Single-axis knee mechanisms tend to be the simplest models, and have a wide 

range of applicability.  There are several types of single-axis knees which incorporate 

additional features like manual locks or hydraulic cylinders.  Single-axis knees tend to 
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work well with friction, either constant or variable, introduced into the mechanism, which 

allows for user comfort and safety [29]. The single-axis constant-friction knee is rare in 

comparison to most prostheses on the market.  It is typically designed and limited for 

pediatric users as it is very durable and light in weight.  The design is simple and is ideal 

for children.  Figure 2-1 shows an example of a single-axis constant-friction knee 

manufactured by Ossur.  While constant-friction single-axis knees are limited in number, 

there are several single-axis knees constructed with variable friction.  Microprocessor 

knees, SNS, pneumatic and other forms of knee designs incorporate the idea of variable 

friction into the knee mechanism (shown in Figure 2-2). 

 
 

Figure 2-1. Constant Friction Single Axis Knee by Ossur 
[13] 

             
OSSUR                                           OTTO BOCK 
Figure 2-2. Variable Friction Single Axis Knee 

[13,14] 

 
 
 Multiple-axis knee mechanisms are characterized by the number of links present 

in the system.  Utilizing multiple links, the engineer can alter the location of the instant 
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center of rotation and thus the motion of the shank in comparison to the residuum.  

Manual locks and condylar mechanisms are also incorporated into these types of knees.  

This thesis focuses on a polycentric four-bar knee manufactured by Otto Bock.  

Polycentric is a term which refers to the instant center of rotation of the mechanism and is 

used primarily to allow for the toe to clear the ground during the swing phase (discussed 

later). 

                         
Figure 2-3. Multiple Axial Knee Mechanisms 

[14] 
 

Exotic knees are a classification which is given to those knees which do not 

‘neatly’ fit into one of the other two mechanical classification systems.  These knees can 

be either single axis, multiple axial or some other type not yet discussed.  The exotic 

approach is new and upcoming and is not widely applied as most have yet to be tested 

rigorously enough to be applied widely as of yet. 

Table 2-2. Mechanical Classification Breakdown 
 
Single Axis Knee: • Manual Lock 
 • Backward Center of Rotation 
 • Friction Brake 
 • Hydraulic Cylinder 
Multiple Axial Knee • Manual Lock 
 • Condylar Mechanisms 
 • 3 Bar, 4,5,6 and 7 Bar Mechanisms 
Exotic Knee • Single or Multiple Axial Knees 
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2.3 User Aspects of Swing and Stance 
 

 User aspects of prostheses define the necessary attributes of prosthetic knees 

especially, and sifts knees into finely differentiated categories.  These categories enable 

the prosthetist to confidently fit a patient, knowing that the knee will meet safety and 

appropriateness criteria during both stance phase and swing phase.  The criteria for 

determining safety and appropriateness for each of the sub-gait categories used by the 

prosthetist depend on the activity level and abilities of the patient.   

The safety of a knee during the stance phase is determined by its stability. 

Stability refers to the ability of the prosthesis to support its user without buckling, and is 

one of the first attributes of the prosthesis noticed by its user.  If the prosthesis does not 

feel stable to the user during stance, rejection is common.  Typically, more active patients 

can tolerate lower levels of stability because they are better able to control their residual 

limb.  Also, as mentioned, those with a larger residuum musculature have the ability to 

apply larger torques and are better suited for less stable knees.  The prostheses of more 

active patients see more use and long-term wear, and the reliability or long term 

performance becomes a greater concern.   

Stability is a necessary part of safe knee performance, but adjustment of the 

knee’s stability is also important.  The knee must be able to initiate swing phase without 

much difficulty.  There must also be some flexion under loading, which itself seems 

counterintuitive to the stability argument.  Normal gait includes small knee flexion at heel 

strike.  This flexion serves several purposes: reduce the initial shock brought on by heel 

strike and reduces the vertical body center oscillation thus reducing energy expended.   
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The behavior of the knee during swing phase is also very important for user 

success with the prosthesis.  It is important to note that the vast majority of prosthetic 

knees are passive joints - they do not add any energy to the amputees walking cycle.  The 

swing phase is initiated upon motion of the shank to the posterior.  The knee joint must 

prevent excessive heel rise as this causes delays during the extension phase which can 

result in the loss of user comfort and confidence as well as increase falling rate when heel 

strike is not synchronized with shank position.  In what is known as mid-swing phase, the 

shank moves anteriorly under the influence of gravity, inertia and an extension assist 

device.  The motion of the prosthetic shank moves more slowly than the sound limb 

during extension, thus requiring an extension aid.  The introduction of this extension 

device poses other issues which must be resolved; the extension aid increases terminal 

impact of the knee’s linkage system on the hyperextension stop. 

In short the knee joint must meet the following criteria relating to the swing 

phase: 

• Dampen flexion to prevent excessive heel rise. 

• Assist extension. 

• Dampen terminal impact at end of extension phase. 

There are also generalized needs of the users which the knee must also satisfy;  

the prosthesis is used not only for ambulation but also for everyday activities such as 

kneeling, sitting and others like driving a car.  All of these activities require the knee to 

bend in a manner that does not impose discomfort or restriction on the user.  

Cosmetically, during sitting the knee must not protrude far beyond the sound limb.  As 

discussed previously, polycentric 4-bar knees are designed to meet this need.  It is 
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important to note these characteristics of the prosthetic gait in terms of the users needs as 

this typically determines the success of the amputee with his/her prosthesis (rather than 

the prosthetic limb’s success). 

 

 

2.4 Medicare Functional Modifier System 
 

The medicare functional modifier system (MFMS) of prosthetic knees (and feet) 

is unique over the other classification methods/systems discussed in that it evaluates the 

users’ abilities and needs to fit them with the ‘most appropriate’ prosthesis.  Up to now 

the prosthesis itself and the mechanism have been evaluated in order to classify them for 

need, but as mentioned, the MFMS evaluates the amputee for their abilities and activity 

levels, thus creating a prosthesis that would best fit their everyday activities.  The MFMS 

is broken into K-scores ranging from K0 to K4 each having its own designations for 

activity and ability levels associated with everyday activities.   

 

 

2.4.1 K-Scores 
 

The K-score is assigned by a prosthetist, and as mentioned, determines the level 

of activity and the appropriateness of a prosthesis for an amputee.  The lowest K-score is 

the K0 level; the K0 score is indicative of an amputee who does not have the ability or 

the potential to ambulate safely either with or without assistance, and a prosthesis would 

not enhance the quality of life.  The K0 level patient is not a candidate for either a 

prosthetic knee or foot and would therefor be limited to mobility via wheelchair.  [7] [19] 
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The K1 level patient shows the ability to ambulate or transfer safely with a 

prosthesis and has limited (and sometimes unlimited) household use.  The amputee can 

ambulate on level surfaces with a fixed gait speed (cadence).  This level is indicative of 

an amputee who uses their prosthesis for therapeutic purposes and is a candidate for the 

basic prosthetic knees and feet.   [7,19] 

An amputee showing the ability to be a community ambulator and is able to 

negotiate low-level environmental barriers such as curbs, ramps, stairs and small uneven 

surfaces is designated the K2 score of the MFMS.  Those able to perform to this level of 

activity are candidates for higher levels of prosthetic feet (i.e. multi-axial) and basic 

prosthetic knees. [7,19] 

K3 level individuals show the ability to traverse most environmental barriers and 

are considered a community ambulator.  They are also able to uphold or have the 

potential to ambulate at a variable cadence, and may have the therapeutic, recreational or 

exercise activity that demands prosthesis use beyond that of the simple locomotion.  In 

order to perform up to this patient’s level of activity, higher end prostheses are used such 

as dynamic response feet and fluid/pneumatic knees.  [7,19] 

Finally, the highest level of activity is indicated by the K4 score and is typically 

assigned to children, bilateral cases, active adults and athletes.  These individuals have 

the ability (or potential) for higher levels of ambulation that possess high impact, stress or 

energy levels.  These amputees are candidates for all the prostheses on the market and are 

considered to have high levels of control and ability [7,19].  Table 2-3 summarizes the 

MFMS K-score and the requirements of each.   
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Table 2-3. MFMS K-Scores 
[7,19] 

 
K Score Amputee Activity Level Prosthetic Knee Prosthetic Feet 

K0 Non-ambulator NONE NONE 

K1 Limited household use, level 

surfaces and fixed cadence 

Basic Basic 

K2 Community ambulator, able to traverse low-level 

boundaries 

Basic Multi-axial & alike 

K3 Environmental barriers at variable cadence Fluid/pneumatic Dynamic response 

K4 Children, Bilateral Cases, 

Active Adults and Athletes 

ALL ALL 
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Chapter 3  Interface Mechanics Literature Review 

 

The technological advance of lower-limb prostheses has been rapid over the past 

several years.  Recent advances in prostheses have occurred in the materials used to 

construct the prosthetic limbs, the complex systems of knees with CPU controlled 

motion, and the interaction between prosthetic foot and ground.  Current research that is 

being applied for the advancement of prostheses, both in manufacturing and patient 

adaptability, has been primarily done within the “commercial sector: new suspension 

options, innovative socket configurations, advances in knee mechanisms, and guidelines 

for prescription and reimbursement of prostheses” [34].  Zahedi [34] reports an “overall 

amputee satisfaction” varying 70-75% among polled patients, while a 20% reduction in 

patient care budget was reported.     

Computer-aided technology has advanced the manufacturing of the prosthesis 

tremendously; what took days is now conceived in hours.  The prosthetic socket is most 

affected by the introduction of computer-aided manufacturing.  In practice, prosthetists 

form the residuum geometry via plaster molds (typical), and then create the prosthetic 

socket around the limb geometry.  This practice requires much skill and experience as it 

is typically a trial and error method.  The patient makes a couple of visits for this method 

of manufacturing, and sometimes even more if the prosthetist’s desired fit does not match 

at first.  Engineers have proposed an interactive lab for the prosthetist in which he/she can 

form the geometry in CAD-Space and from there, a lathe receives  geometric inputs from 
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the CAD-file and carves “a positive of the socket from a plaster composite material” [33].  

Finally, the socket is created by vacuum forming a piece of polypropylene over the 

positive socket cut.   

While fit adjustments and design alteration considerations are always present, 

correct fitting between the prosthetic socket and the patient’s residual limb has the 

following consequences: 

• It prevents further injury to the residuum via an inflammatory 

response (followed by necrosis). 

• It allows the patient sufficient control of the prosthetic limb. 

• It enhances the patient’s comfort. 

These are generalized concepts which can lead to a successful prosthetic limb.  

The socket is the starting point for any prosthesis design phase, primarily because if the 

patient-prosthesis interface is not created to perfection, problems are inevitable. 

This chapter deals with the underlying principles of the interaction between the 

patient’s residual limb and the prosthetic socket (and liner) also referred to as the 

interface mechanics.  Interface mechanics in these terms, reference the interface stresses 

induced upon the residuum via the prosthesis and loading during ambulation.  Shear 

stresses are felt as friction by the patient, and normal stresses correlate with the pressure 

caused by stance and ambulation.  Stress concentrated around the interface between a 

residual limb and a prosthetic socket is a crucial piece of information when designing the 

socket to an individual with an amputation.  As mentioned, the prosthesis must be safe to 

the surrounding tissue, provide some sense of comfort to the individual, and not fall off. 
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Finite element techniques have posed a possible route to uncovering the stresses 

on a modeled residual limb. These techniques can facilitate designing a socket which 

alleviates stresses which cause tissue trauma and/or discomfort to the patient, or 

designing a prosthesis which can optimize these stresses to better serve user control.   

Finite element techniques, in a nut-shell, allow for the small ‘finite’ division of a 

complex geometry. This allows for geometries and loads which are very difficult to 

analyze via analytical methods to be broken into smaller ‘elements’ which can be 

analyzed.  These techniques have been identified as a tool to enable the in-house lab to 

create an optimal prosthetic socket, one which ensures the most control over the 

prosthesis as well as safety to the patient.   

This review encapsulates the ideas of interface mechanics, how they relate 

towards control and their importance within external prosthetics as well as the 

idealizations of finite element analysis, the assumptions and complications therein, which 

permit the creation of the ‘optimal’ prosthesis for each patient. 

 

 

3.1 Finite Element Analysis Design 
 

The objective of the socket shaping process essentially is to “optimally distribute 

the interface stresses between the residual limb and socket while providing adequate 

stability and efficient control of the prosthesis” [33].  There are other design criteria 

besides the geometry of the socket which affect the overall stress distribution; material 

properties of the inner liner and socket wall also have significant influence.   
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Finite element analysis (FEA) is an engineering tool which has earned great 

respect within industry and research institutions and is being incorporated within 

prosthetics in order to understand the “relevant biomechanical rationale, especially the 

biomechanical interaction between the stump and the socket” [35].  FEA is widely 

applied in engineering practice in order to obtain approximate analytical solutions to 

problems for which no simple closed-form solution exists. 

To initialize the model, the geometry which represents the residuum and socket 

alike, is generated and divided into finite segments (elements) which when put together is 

referred to as the element mesh.  The nodes of the mesh are the points at which there are 

interface “vertices” [33].  These nodes are crucial in the design phase of modeling as they 

determine the slip parameters of the interface, which tells the program that the socket and 

residual limb are not one material and must allow slip as well as no tensile stresses to be 

induced.  The method in which slip is implemented differentiates between research 

approaches and is described later. 

FEA requires distinct knowledge of several overall features of the model itself.  

Several design characteristics are of critical importance, because of their affect on the 

accuracy of the model: 

• The material properties of the soft tissues which “exhibit nonlinear 

and non-uniform behavior”. [20] 

• The way that interface nodes between the socket wall and the 

residual limb are modeled. 

• The accuracy of the residuum geometry: soft tissue, bone, and 

location. 



www.manaraa.com

    

39 

• The inclusion of pre-stresses within the soft tissue (as a result of 

wearing the prosthetic socket, ‘snug fit’/donning of the socket on 

the limb). 

Each of the above items has been simplified in different ways by different 

researchers, which allows for variations in results leading to skepticism about the 

accuracy of FEA of external prosthetic sockets (and interface mechanics).  The variations 

in the research results are discussed later in this chapter.  

Finite element analysis, as it applies towards interface mechanics, has progressed 

tremendously from only accounting for 2-dimensional geometries with linear properties 

to now integrating 3-dimensional residual limb geometry and incorporating nonlinear 

tissue properties (bone, epidermis and other soft tissue) as well as pre-stressing of the 

epidermis due to the donning of the prosthesis.  Other newly integrated approaches 

attempt to find better models by incorporating different distal-end boundary conditions 

[36].  To summarize the key aspects of the Finite Element techniques, in order to have a 

working analysis, the inputs into the program are as follows: 

• Geometries 

• Element Properties 

• Boundary Conditions 

Each of these inputs allows for the application of different approaches and 

variations in the design and analysis of the interface stresses, thus creating a need for 

model validation. 
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3.2 Finite Element Analysis Techniques 
 

Variations in the three major components of the FE model result in different 

model predictions.  In the next few sections, the different approaches to interface 

mechanics are reviewed based on their decisions in creating the FE model.  

 

 

3.2.1 Geometry 
 

The model geometry is one of the more complex areas of focus within any FEA.  

Within interface mechanics the model geometry varies from researcher to researcher 

through many facets:  interface methods, residuum modeling and interaction with 

fibula/tibia location within the residual limb.  The first two are debated within many 

papers of the field and are discussed here.  

The ‘interface methods’ describe the type of methodology called upon to describe 

the interaction of the residuum epidermis and the socket liner and socket itself.  

Zachariah and Sanders [33] describe three different types of interaction analysis, each of 

which is analyzed within this section: 

• Totally “glued” interface [1], [17], [21] 

•  Partially “glued” interface [25] 

• Slip permitted at the interface [35]  
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3.2.1.1 Totally-Glued Interface 
 

The totally-glued interface is an assumption that the residual limb and the socket 

or socket liner (and socket) are modeled as sharing nodes.  Sharing these nodes implies 

that no slip or separation is allowable and thus acts just as a glued interface would.  “The 

interface stress estimated by the FE solution is the nodal stress at the set of common 

nodes” [33].  Zachariah and Sanders [33] describe the main advantage of the totally-glued 

interface as its simplicity, both in setup and in computation as well as the low cost of the 

tools required to perform the computation.   

Brennan [1] used a model which employed the method of totally-glued interface 

between the skin and the socket in an above knee prosthetic socket.  The socket was 

modeled as a rigid structure and no socket liner was employed in the model.  The 

residuum epidermis was not modeled separately and thus shared the common nodes with 

the rigid socket wall.  The Poisson’s Ratio and Young’s Modulus were standardized (in 

reference literature), while the material behavior of the soft tissue was based upon other 

research noted in the paper.  Brennan compared the data collected from the FE model to 

experimental data which was set up to measure the pressure at key points within a 

modified socket which held piezoresistive pressure transducers in key locations within 

the socket wall. 

Sanders [20] also utilized the totally-glued interface to make early assumptions to 

simplify analysis.  While the method seems common, Sanders did utilize a unique 

approach in material modeling; both fat, soft tissue and muscle were included in the 

geometry of the residuum, trying to create a more accurate model of the residuum. 
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Reynolds [17,18] also employed the assumption of a totally-glued interface in a 

patellar-tendon-bearing (PTB) below-knee socket “to assess interface pressure sensitivity 

to socket rectification (socket shape), tissue material properties (modulus), and alignment 

(force direction at the model boundary)” [33].  The idea behind the assessment of 

pressure sensitivity to changes in the socket shape is one of the driving forces behind the 

application of the finite element approach in optimal socket rectification (as mentioned in 

the introduction). The application of this approach is one way to apply the in-house lab, 

which could revolutionize the prosthetic industry and become a priceless tool for the 

prosthetist (beyond what it is currently doing). 

 

 

3.2.1.2 Partially-Glued Interface 
 

The partially-glued interface is one which was first modeled as totally glued (the 

socket wall or wall and liner shared a common node with the residuum thus creating the 

single geometry) but during the post-processing of the FEA a noticeable tensile stress 

was identified and a modified model was created to eliminate the tension that was 

present.  Different approaches to eliminating the tension are reported; creating separation 

between pairs (i.e. introducing discontinuities), or defining an extremely low socket 

modulus at the point of tension are both strategies for the partially-glued interface 

correction.   

Steege [28] reported the existence of the tension and thus utilized the partially-

glued interface assumption.  Socket information was gathered using CT scans of patients 

wearing PTB socket with liner (methods of geometric formulation of the residuum is 



www.manaraa.com

    

43 

discussed later in this section).  Interestingly, Steege modeled the cartilage as a 

completely different material than the rest introducing some of the nonlinearities.   

This method is generally ignored, as many feel that the simplification of the 

totally glued interface may work for their application while other researchers tend to 

model the interface with more of a slip nature – allowing slip between surfaces and 

eliminating any tensile stresses induced (i.e. allow separation).  The latter refers to the 

final interface method mentioned previously, slip permitted at interface. 

 

 

3.2.1.3 Slip Permitted at Interface 
 

The method of allowing slip at the interface between the socket and residuum is 

one which incorporates more complexities in the FE mesh and model.  Different tools to 

incorporate the slip permitted interface are difficult and include slip–elements which are 

introduced as either springs [16], coulomb frictional elements or by using FE add-ons 

which allow for the use of slip elements (ABAQUS v6.3, [9].).   

The concept of allowing slip is one which is being approached more when 

modeling interface mechanics; in fact Zhang and Mak [35] were attempting to design a 

model to test whether the distal-end loading had much of an influence on the overall 

accuracy of the model.  In doing so, they applied the slip-permitted interface method 

using ABAQUS.  They modeled the nodes between the socket and residual limb to be 

separate which allowed slip and separation.  Notice in Figure 3-1 (taken from Zhang and 

Mak [35]), that the residuum and socket are modeled separately and using ABAQUS are  
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allowed to separate and slide tangentially past one another while still contacting, creating 

frictional and normal stresses (interface stresses) that are crucial to the science.   

 
 Figure 3-1. Mesh of Above-Knee Stump and Socket (Zhang and Mak) 

Zhang and Mak’s [35] rendering of (a) “Mesh based on a sagittal plane geometry of an 
above-knee stump and its socket.” And (b) “Interface element consisting of nodes 1 to 4, 

nodes 1 and 2 on the skin surface and nodes 3 and 4 on the internal surface of the socket”. 
 

Figure 3-1 illustrates the entire residuum geometry including: bony tissue, soft 

tissue, socket as well as the distal-end boundary condition (discussed under Boundary 

Conditions). 

Silver-Thorn [23] was mainly interested in determining the importance of the 

complexity of the residuum geometry to the accuracy of the model.  Three different 

models of varying the complexity (successively increasing the accuracy) were created 

and tested to determine the point at which simplification to the model is allowable 

without much tradeoff to the accuracy of the solution.  PTB below-knee models were 

created for this analysis and were also modified to include the joint spacing and cartilage 

(most considered rigid in the simpler model). 

 



www.manaraa.com

    

45 

As the demand for the understanding of interface mechanics grows, this method 

of slip permission at the interface is becoming more appreciated.  Determining the route 

by which one applies this idea is what varies researcher to researcher. Overall the 

understanding of slip is vital to the success and accuracy of the FE model in general. 

 

 

3.2.2 Element Properties 
 

Employing the totally-glued interface assumption raises several questions about 

the material behavior.  Fundamentally, knowing that the socket and residuum epidermis 

have very different material properties, how does the totally-glued interface take this into 

account?  This question led researchers to try to understand the material properties of the 

different tissues as well as the material properties of the socket.   

Noticeably, in most models the material behavior of all the elements – bone, 

cartilage, soft tissue, liner and socket – were assumed to be homogeneous, isotropic and 

linearly elastic.  It has been shown through extensive modeling that the material 

properties have an extensive impact on the overall stresses within the prosthetic socket. 

The material properties of the socket wall have effects on the overall stress 

distribution within the socket.  Quesada [16] showed that decreasing the overall socket 

modulus and making the socket ‘less stiff’ decreased the normal stresses within the 

socket greatly.  Decreasing the stiffness can also be achieved by changing the thickness.  

Quesada also showed that decreasing the thickness of the socket did affect of stress 

within the socket greatly and therefore could be applied to situations where the normal 

stresses were too high.  Silver-Thorn [25] reported that the normal and shear stresses 
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within the socket wall were much more sensitive to the changes in the socket liner 

stiffness than to the stiffness of the socket itself.  These findings seem to be indicative of 

displacement loading. 

The socket liner stiffness also has an effect on the stresses within the prosthesis, 

but care must be taken not to be too liberal with the softening of the liner as there are 

tradeoffs.  While decreasing the stiffness of the liner eases the stresses within the socket, 

too the same degree does the patient loose stability in the prosthesis.  A certain degree of 

stress is therefore required to maintain control of the prosthesis, while too much stress 

causes discomfort and even trauma to the surrounding tissues. 

The soft tissue of the residual limb also shows impact on the predicted stresses 

within the socket.  As the tissue grows tougher it exaggerates the stresses within the 

socket.  The shear stresses were shown to be affected more by the increased tissue 

stiffness than the normal stresses were.   

Skin (not to be confused with the soft tissue) was only modeled separately by 

Sanders [21].  It was shown that the result of the increased stiffness of the skin was 

opposite to that of the soft tissue with regards to both shear and normal stresses.  This 

may suggest that “membrane elements capable of transferring only tension may play an 

important role in the FE model” [33]. 

Bones need to be studied further to determine whether the material properties vary 

with stress distribution.  Currently bones are usually modeled as rigid bodies, but due to 

some bending of the bones under loading led Steege [18] to use the properties of cortical 

bone to try and model the phenomena.   
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3.2.3 Boundary Conditions 
 

The application of boundary conditions has dramatic affects on the overall 

analysis of the model.  One of the most prominent loading assumptions is made based 

upon the body weight of the person at the hip joint.  Typically an assumption (for stance) 

of one-half of the body weight is loaded directly onto the femur (or is transmitted based 

upon gait location for below-knee prostheses).  

One very interesting analysis was conducted by Zhang and Mak [35] testing 

whether the distal-end boundary condition had an effect on the interface stresses.  Three 

models were used, one with no distal-end loading (modeled with an air gap between the 

distal end of the residual limb and the bottom of the gap, Model A), one with full contact 

between the distal-end and the socket (Model B) and a final model with an air gap 

simulating a partial loading of the distal end (suction socket with sealed air, Model C).  

Included here is a Figure which Zhang and Mak [35] used to describe the loading and is 

depicted here as Figure 3-2 not only for its explanation of the distal-end loading 

condition. 

 
 

Figure 3-2. Distal-End Boundary Conditions  
Image by Zhang and Mak [35] 
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3.3 Modeling the Residual Limb 
 

Modeling the residual limb in order to input it into the FE model can be costly if 

done in detail or simple if appropriate assumptions are made.  Computed Tomography 

(CT) is one of the medical approaches attempted to model the internal tissues of the 

residuum accurately.  This is still somewhat difficult and others have approached the 

more interactive Magnetic Resonance Image (MRI).  The main disadvantage of having to 

use these approaches is their soaring cost.  Preliminary research allows such an expense 

but some assumptions must be made in order to allow simplifications and/or addition of 

data to model the current patient’s residuum accurately, quickly, and inexpensively.   

Brennan determined the “shape of the un-deformed residual limb… by digitizing 

a loose plaster wrap-cast of the subject’s residual limb” [33].  The shape and location of 

the bone structure of the residual limb was constructed using CT scans of a person with 

similar stature.  This applies some of the concepts of complexity management in an 

inexpensive route via the use of CT scans from another patient with similar stature to that 

of the current patient. 

        
                                                  (a) 
 
                                                  (b) 
 
                                                  (c) 
 
 

Figure 3-3. FE Modeling  
(a) Bone, (b) Soft Tissue and (c) Socket Liner 

Image by Faustini et al. [4] 
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Faustini et al. [4] depicts graphically the FE model used in their estimation of the 

stresses.  The layered geometry allows the bone, soft tissue and socket/liner to all be 

incorporated into the model in order to create a more realistic model for analysis.   

Moreno et al. [12] used MRI as a basis for the reconstruction of the residual 

geometry.  As, mentioned the high costs limit the use of MRI, but not many other 

methods can match the accuracy of the model generated from such methods.  “Magnetic 

resonance imaging (MRI) was selected as an ideal diagnostic and research tool to study 

the behavior  of hydrogen atoms in the body tissues” [12].  As the hydrogen atoms reflect 

the frequency emitted by the MRI, a local concentration of the hydrogen atoms allows the 

differentiation of the tissues within the residuum.  This differentiation of the tissues 

within the limb allows the scientist to model the residuum within 3-dimensional space 

accurately and efficiently.   

In order to perform the MRI without inducing a deformed geometry (from the 

patient lying down), Moreno et al. [12] fitted the residual limb with a plaster cast which 

was fit onto the limb slowly and diligently.  Care was taken not to alter the anatomically 

unloaded “topography” of the limb. 

It is ideal to use such tools as the MRI and CT that are available to us, but the cost 

of each of the tests limits the amount of uses that can be applied in a research setting.  

With a database of such measurements from research, it may be possible to use data from 

a prior patient to estimate the geometry of a new patient’s residuum.  These tools, which 

take cross sectional ‘pictures’ of the tissues, allow researchers to model the tissues of the 

residual limb, which differ greatly from the normal limb.  It is only through these  
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techniques that an understanding of the internal tissue orientation can be discovered and 

modeled for use within finite elements (or other medical purposes).   

Future applications of MRI as a research tool include the response of the tissues, 

bones and epidermis to the mechanical loading applied through the prosthesis.  The use 

of these techniques is limited by costs but there are endless research possibilities.   

There are limitations to the use of different imaging techniques:  X-ray and CT 

scans expose the patient to ionizing radiation and X-rays produce a 2-dimensional model 

(a planar projection of a 3-dimensional image) requiring at least two views in order to 

extrapolate a 3-dimensional image (resulting in substantial error).  As mentioned care 

must be taken not to influence tissue location based upon the gravitational field; if the 

patient is lying down, the limb must not distort from that of the limb while in stance. 

 

 

3.4 Experimental Analysis 
 

Tests have been conducted to define the stresses within the prosthetic socket 

within laboratory as well as clinical settings by several groups.  Both above-knee and 

below-knee amputations were analyzed and researched for the studies.  Pressures were 

recorded within the socket in order to explore the effects of “prosthetic alignment, 

relative weight-bearing, muscle contraction, socket liners, and suspension mechanisms on 

the interface pressure distribution” [25].  Pressure measurements were recorded at 

discrete points within the socket, which was limited due to the discrete number of 

locations a transducer could be placed.  They were put in locations deemed of ‘high 

interest’ within stress analysis (‘high interest’ termed to describe a point of high stress). 
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It is difficult to equate the stress measurements from researcher to researcher as 

the pressures varied as a result of the type of transducer used as well as the method for 

calibration standard to a particular laboratory. 

In most of the completed experimental tests, a special socket was fabricated to 

house the transducers for measurement.  This method is preferred over use of the 

subject’s own prosthesis, as tapped/drilled holes permanently alter the prosthesis.  One 

disadvantage to the experimental techniques is the high cost for transducers and the 

relatively low area covered in the measurement of stress per transducer.  In addition, 

some transducers have difficulty with quick response and are therefore not suitable for 

dynamic testing.  In laboratory and clinical testing, the finite thickness of the transducer 

can also play into the role of a stress concentration within the socket and measure stresses 

higher than what would normally be experienced by the residual limb.   

There have been commercial developments within the field of these transducers 

and are currently being employed as an alternative to the slower less evolved ones in use 

for earlier testing.  “Teksan, Inc. (Boston, MA) markets several biomedical pressure 

measurement systems… utilizing a grid-based sensor in which the rows and columns are 

separated by a polymer whose electrical resistance varies with force” [25].   

The limiting factors in experimental data collection leave room for the 

introduction of error, thus preventing of a direct comparison between computational 

stress methods like FEA, and experimental stress measurements.  Further improvements 

need to be made in experimental approaches as well as to the finite-elements method to 

get validated stress measurements using interface mechanics. 
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3.5  Numerical Analysis 
 

One of the primary advantages of using numerical analyses (finite elements) over 

experimental analyses is the potential to estimate the interface pressures over the entire 

residuum.  In some research, the data collected is not limited to the interface stresses but 

can also include ‘subcutaneous stresses’.  The latter can be used to evaluate the overall 

longevity and success of the prosthesis per the individual, as well as other influential 

factors within the residuum affecting the prosthesis’s success with the patient – thus 

defining the problem at hand.  For the past twenty years, finite elements has been the 

leading choice when using a numeric methodology; finite elements is chosen primarily 

based upon the endless boundaries within the software, the analysis is only bounded by 

the hardware in use (which can be upgraded when needed). 

 

 

3.6 Validation of the FE Analysis 
 

Currently, validation of the models can only be achieved through experimental 

means (which possess errors within the test setup as discussed previously).  Only discrete 

points within the socket have been measured leaving holes within the validation of the 

model.  These holes are only filled through theory and/or extrapolation of data (which in 

itself is theory).  Some researchers have quantified data leading to verification of FEA 

within the range of experimentally recorded data. 

Qualitative analytic and experimental stress waveforms were created by Zhang 

[35] and showed similarities within a double peak.  “The predicted resultant shear 

stresses were less than the experimental values at all measured sites.”  Zhang [35] 
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reported a rough 30% difference (lower) in analytic results over experimental.  One of the 

sources of this error is however due to an assumption made within the FE model; the FE 

model was analyzed under stance where half the body weight is applied through the 

Femur, while experimentally dynamic analysis was conducted during various stages 

within the gait cycle [36]. 

Sanders et al. [20] reported interface shear stresses high enough to cause blisters 

on the epidermis which fall in the range 4 kPa to 23 kPa (running between 22 and 118 

cycles and average coefficient of friction 0.5).  The magnitude of the experimental stress 

varied slightly from the analytical due to the type of socket used in experimental analysis 

(Berkeley jigs, which are substantially heavier than the typical thermoplastic socket) 

along with the patients not wearing socks which exaggerates the coefficient of friction 

(and intuitively causing blisters). [33]  

Sanders and Daly [20,21] also reported double-peaked interface stress curves 

which matched “the general trend in clinical data”.  They reported a ‘best match’ between 

the analytic and experimental data at the postero-distal and antero-proximal sites, while 

“consistent mismatches were seen in antero-lateral distal normal stress waveforms… and 

postero-proximal normal stress waveforms” [21].  Much effort was invested into the 

discussion of the analytical matches with characteristics of waveform shapes [21] and is 

broken into:  loading delays, high frequency events, central stance and toe-off.  With 

collected data, the recurring similarities between the 3-dimensional model (created with 

MRI technology) and the experimental analysis were proven to be substantial leading to 

the effective prediction of interface stress with the FE model.   
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When attempting to quantitatively compare the data it is important to recognize 

that the technique and methods used to evaluate the stresses varied from study to study.  

“The type of activity, type of transducer, and location of the transducers on the residual 

limb surface differed between laboratories” [33], and thus accounts for some of the 

discrepancies within the data.  Clinical data was not always measured within the lab, but 

was taken from other sources which may have evaluated the stresses at a different period 

in the gait cycle.   

In a general view, the differences in the models are results of the techniques and 

methods used in the interface model. 

 

 

3.7 Parametric Analysis 
 

Zachariah et al. explored in detail the idea of parametric analysis [33].  

Parametric analysis is performed via altering one variable in the system and relating it to 

a change in a particular quantity output; when “the magnitude of one variable in the 

model (or one feature of the model) is perturbed about its chosen value and the relative 

change in the estimated quantity evaluated” [33].  This type of analysis is particularly 

important now with the technological advance of the finite elements method within 

interface mechanics in part due to its ability to point out with some level of assuredness 

that parameter ‘X’ must be specified to accuracy ‘%’ in order to create a model with as 

little of error as possible without creating complexities far greater than the level of 

technology available.  In simpler terms, it allows one to conclude just how precise a 

parameter within the model (material property, geometric measurement/differentiation 
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etc) must be with the application of simplifications and/or assumptions to the model for 

ease of calculation or analysis.   

Parametric analysis was conducted on geometric properties, element properties 

and boundary conditions (the three main aspects behind the finite element modeling) in 

order to determine the ‘optimal’ model for accuracy and simplicity.  All parametric 

analysis was based upon Silver-Thorn’s definition of sensitivity – the ratio of the relative 

change in the finite element estimate to the parameter disturbed. 

Table 3-1. Parametric Analysis 
Zachariah et al.’s tabular review of “Experimental Comparisons and Parametric 

Analyses” [33] 
 

Parametric analyses Type of 
Interface 

Investigator 
(year) 

Loading 
Condition 

Experimental, 
data 

comparison 
Geometry Element 

Properties 
Boundary 
Conditions 

Brennan 
(1991) 

Standing Std. prosthesis 
Modified socket 

Socket 
shape 

- - 

Reynolds 
(1992) 

Standing - Socket 
rectification 

Soft tissue 
stiffness 

Alignment 

Glued 

Sanders 
(1993) 

Stance 
phase 

Std. prosthesis 
Modified 
alignment 

- Skin stiffness Force, 
moment 

directions 
Steege 
(1988) 

Standing Std. prosthesis 
Modified 
alignment 

- - - 

Steege 
(1995) 

Stance 
phase 

- - Bone stiffness - 

Tension 
Released 

Silver-Thorn 
(1991) 

Standing Std. prosthesis 
Modified socket 

Socket 
rectification 
Absence of 

fibula 
Stump length 
Bone Shape 
Socket shape 

Socket stiffness 
Liner stiffness 

Soft tissue 
stiffness 

Soft tissue 
Poisson’s Ratio 

- 

Quesada 
(1991) 

Heel 
strike 

- stump length Socket 
stiffness 

Soft tissue 
stiffness 

No release 
of tension 

Slip 
Permitted 

Zhang 
(1995) 

standing - -  Coefficient 
of friction 
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Table 3-1 – from Zachariah et al. – summarizes the work of several researchers in 

the area and the area on which they focused their work within interface mechanics.  It is 

included here as a well defined summary of the work in the area up to the year 1996.  The 

parametric analyses conducted by each researcher tend to form the overall picture of the 

importance of elements within the main sections of finite element modeling.  

The geometric parametric analysis ranged from the socket (shaping and 

rectification therein) to the very distinct realities of the residuum biological tissue 

differentiation.   

Zachariah et al. report that Silver-Thorn’s analysis of a short socket with PTB 

rectification experienced small deviations in normal stresses but noticeable variations 

within shear with the absence of the fibula in the model.   

The residuum length had an affect on the normal stresses within the socket; the 

shorter the residuum the higher the normal stresses recorded (Quesada’s model of heel 

strike).  In theory, the variations in normal stresses are a result of the change in the lever 

arm acting with the bending moment of the limb as well as the area which is exposed to 

the loading of the person (dynamic or static). 

As noticed in Zachariah et al.’s table summarizing the parametric analyses (Table 

3-1), the element properties were believed to have just as much impact on the accuracy of 

the models as that of the geometry.  First and foremost, the modeling of the socket itself 

requires insight into the material behavior and its properties to model the stresses stored 

within the thermoplastic.  Studies varying the thickness of the socket (stiffness) achieved 

by Silver-Thorn reflects the latter theory of element property importance, in that as the 

thickness of the socket wall decreased so did that of the normal stresses within.  Even 
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with these stress alleviations, Silver-Thorn reported that the sensitivity of stress relief was 

not as great for the introduction of compliance into the socket as it was when the socket 

liner was analyzed. 

Silver-Thorn’s model also varied the socket liner stiffness and recorded the 

changes in stresses within the socket.  As the socket liner stiffness increased the normal 

stress increased greatly.  There is a trade-off involved in liner stiffness decrease though, 

as a relief in stress is seen with a less-stiff socket a reduction of socket stability is also 

noticeable.  [23] 

When modeling the geometry of the system the location of the tissues were of 

great importance (which is why more elaborate methods of tissue differentiation are 

being utilized more often), and were thus exposed to the parametric analysis as well.  The 

stiffness of the soft tissues were increased and reports by Quesada, Reynolds and Silver-

Thorn all showed an increase in the stress.  This is parallel to the medical knowledge of 

tissues which have been injured and have healed to a permanently hardened state (which 

reflects that of scar tissue).  These tissues have less ability to flex under loading and as 

such experience much higher stresses than those which can yield to the applied loading. 

Steege’s [28] test of transtibial prosthetic gait showed significant “bone bending” 

which led to the use of the material properties of cortical bone as opposed to cancellous 

(1.5 GPa as opposed to 10 MPa).  Zachariah et al. report that the parametric analyses of 

these preliminary results are essential to the full understanding of bone properties within 

the finite element model. 

The final aspect of the FE modeling – Boundary Conditions – is also reviewed 

parametrically and touches upon the interface, external loading and alignment issues.   
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Modeling of the interface is the key within the finite element model and the 

conditions for slip/stick are of utmost importance.  The three methodologies used were 

analyzed including the totally-glued interface, which revealed that tensile interface 

stresses reduce the peak compressive stresses (60-85%) [33].   

External loading is fairly intuitive as the model is most susceptible to variations in 

stress magnitudes through axial and bending moments in the sagittal plane.  Sanders 

reported parametric analyses of these conditions and noted that the normal stresses and 

shear stresses were most susceptible to the axial force and sagittal bending moment while 

the normal stresses were also sensitive to alterations in the sagittal shear force while the 

shear stresses were more sensitive to the torsional moments applied. 

As a general research investment, parametric analyses are highly informative 

towards the future direction of the computational analysis of the interface stresses (or 

estimation thereof).  It allows the scientist to model complex residuum geometry with 

appropriate assumptions which are not detrimental to the success of the model itself and 

are able to provide the necessary information to differentiate the simplifications made in 

the model. 

 

 

3.8 Conclusions on Interface Mechanics Review 
 

Through extensive research it has been shown that the finite elements method has 

the possibility to be an extremely powerful computational tool for the estimation of 

interface stresses within external prosthetics studies.  As technology advances and 

computers become more powerful, the bounds upon which finite elements can be applied 
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are approaching limitless.  There is a strong possibility that finite elements can contribute 

greatly towards efficiency in prosthesis care as a tool for the estimation of stress as well 

as that of parametric analysis.   

While many of the experimental techniques are not suitable for routine clinical 

settings, it is clear that with the incorporation of the thin pressure membranes into a 

smaller transducer-like function, it is possible to enhance the clinical measurement of 

each patient as prostheses are manufactured.  It is one of the main goals of the further 

understanding of interface mechanics to enhance patient care and prosthetic efficiency.   

It is clear that the interface is of great importance within prostheses, and as the 

research has shown, the experimental grounds behind measurement yield limitations in 

the discrete number of locations force measurements can be taken without inducing 

higher errors in the form of stress concentrators.  Numerical finite element analysis is 

becoming useful in its ability to evaluate over the entire surface and even subcutaneously. 
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Chapter 4  Bistable Compliant Extension Aid 

 

A Bistable Compliant Extension Aid (BCEA), designed to be added to an existing 

polycentric prosthetic knee, was developed and analyzed using a finite elements software 

package (ANSYS). Design criteria for the BCEA were based on swing control 

requirements that are not inherently satisfied by the geometry of the polycentric knee’s 

four-bar frame.  The requirements of the prevention of excessive heel rise and a stable 

sitting position, were achieved by optimizing the BCEA’s geometry. The optimization 

procedure was based on knee flexions ranging between 0 and 90 degrees and the resulting 

reaction moments experienced by the compliant segment.   

 

 

4.1 Design by Specialization 
 

The majority of commercially available prosthetic knee joints are designed to 

meet the user’s level of performance, whether it is being fitted to a limited household 

ambulator or an Olympic athlete, the prosthetic knee must perform optimally.  There is 

no one-size-fits-all prosthetic knee; therefore, performance is ‘designed’ on a case-by-

case user-defined basis, meaning that there is a spectrum of knee prostheses which meet 

high-stability needs while others meet the maximum user-control preference and all those 

between.   
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The tradeoff between control and stability is among the first attributes the user 

notices when getting acquainted with a new prosthesis.  Typically the higher the level of 

amputation, the more stability is required of the knee mechanism, as there is less residual 

musculature the amputee has at their disposal; conversely the lower the level of 

amputation, leading to the knee disarticulation, leaves much more thigh muscle intact 

along with a longer lever-arm, thus leaving a higher ability to apply control over the 

prosthetic limb [7].  

  Achieving necessary tradeoffs, while meeting basic functional requirements is 

accomplished by design by specialization.  In a prosthetic knee, many basic functional 

requirements are achieved by the polycentric (four-bar) knee design, while important 

functional tradeoffs can be accomplished by design specializations.  As examples, Figure 

4-1 depicts two different specializations of the same polycentric knee mechanism: the 

Otto Bock (a) 3R32 and (b) 3R55.  The Otto Bock 3R32 specialization consists of a 

manual lock and facilitates a K1 level amputee (“poor voluntary control” and “transfer 

only” [14]), while the 3R55 specialization is designed to meet the K3-K4 level amputee 

(“good voluntary control” and “community ambulators who can walk with variable 

cadence and for patients who participate in high impact activities such as running” [14]). 

 
                       (a)                             (b) 

Figure 4-1. 3R32 with Manual Lock (a) and 3R55 with Pneumatic Cylinder (b) 
[14] 
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The purpose of this chapter is to introduce a compliant link add-on as a 

specialization of the Otto Bock 3R32 and 3R55 frame, acting as an extension aid which 

prevents excessive heel rise and provides a stable sitting position. 

 

 

4.2 Background 
 

Traditionally, prosthetic knees are designed as rigid frames with pin joints 

accommodating motion (if appropriate).  They are typically analyzed using force loading 

and failure is determined by stance criteria and buckling.  Compliant mechanisms, on the 

other hand, gain some or all of their motion from the deflection of flexible segments, thus 

producing a form of directed buckling of the linkage.  Because of the buckling effects, 

compliant mechanisms are more effectively analyzed under displacement loading rather 

than applied force. 

Why then would compliant mechanisms be a good fit for prostheses?  The general 

advantages of compliant mechanisms within the prosthetics area include relative lighter-

weights, lower costs both in a reduction of part count as well as manufacturing (most are 

polymers), they hold high reliability and can be designed for high-precision applications 

[8].  This chapter will also introduce a specialized design advantage the compliant 

mechanism add-on can offer – the introduction and transfer of moments that vary over a 

given displacement, needed for proper swing control.   

Compliant mechanisms have been studied as a feasible alternative to rigid-body 

mechanisms within prosthetic joint design.  Prominently, work done by Guérinot et al. [5] 

introduced methods of using compliant mechanisms – which are predominantly used with 
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tensile loading – under high compression situations similar to those seen by a prosthetic 

knee joint, known as High Compression Compliant Mechanisms (HCCM).  These 

methods have proven to be the foundation for the introduction of compliant mechanisms 

to prosthetic knee and ankle design.  The two methods, inversion and isolation, either 

transform a compressive load to tensile via geometric alterations (inversion) or transfer 

the compressive loads through rigid links and away from the compliant links, similar to 

traditional prosthetic knee mechanisms (isolation).   

More recently a project undertaken by Mahler [10] also combined compliant 

mechanisms and prostheses by designing an adjustable pediatric compliant prosthetic 

knee mechanism to better suit the needs of a growing child who would be subjected to 

harsher, more active environments.  His research focused on the kinematic instant center 

of rotation of the mechanism in order to understand motion (extension and flexion) 

relative to ‘knee adjustment’.   

Both projects along with several others including a prosthetic ankle [32] have 

proven the validity of compliant mechanisms technology within prosthetic joint research.  

This chapter further introduces compliant mechanism technology and its inherent 

advantages to the field of prosthetics via a design specialization of the Otto Bock 3R55 

and 3R32 knee frame. 

 

 

4.3 Functional Criteria 
 

The compliant extension aid was designed to meet functional criteria for efficient 

prosthetic swing control, which have been standardized by the prosthetics industry over 
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years of practice.  The standards of stance control are also of importance in prosthetics, 

however for this project, stance was not evaluated since a prosthetic knee mechanism – 

the Otto Bock 3R55 and 3R32 – which has been tested and validated, was used as a base 

and therefore does not require further scrutiny (only to the extent that the BCEA does not 

interfere with its function).  The functional criteria which were pre-defined are those of: 

sufficient ground clearance, prevention of excessive heel rise at the end of knee flexion, a 

fast extension phase and in some cases a terminal impact stop just before heel strike.  

Table 4-1 summarizes these functional criteria. 

Table 4-1. Summary of Swing Phase Requirements 
 

Swing Phase 
Requirements 

Purpose 

 - Ground Clearance Prevents stubbing of the 
toe. 

 - Prevent Excessive 
Heel Rise 

Allows the shank to be in 
position for stance phase. 

 - Fast Extension 
Phase 

Ensures the shank moves 
into position. 

 - Terminal Impact 
Hyperextension Stop 

Provides a signal that 
shank is in position for 
load bearing (although 
not a strict requirement). 

 
 

With the exception of recent advanced prosthetic knees on the market (i.e. bionic 

technology by Ossur – Power Knee), prosthetic knees are passive knee joints; they do not 

add energy to the amputee’s gait.  Since these prostheses do not add energy to the swing 

phase they must conform to certain principles in order to function properly to maintain a 

proper gait pattern.  Normal prosthetic swing is initiated by movement of the shank 

posteriorly under the influence of inertia.  It is imperative that excessive heel rise is 
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prevented since it slows the extension phase (thus causing falling).  During mid-swing, 

the shank moves anteriorly under the influences of inertia (providing there is an extension 

aid present) and gravitational forces. 

The rotational speed of the prosthetic limb (knee) is slower than that of the sound 

limb not only due to the lack of input energy via musculature, but also due to differing 

mass distribution.  The result is a slower-abnormal gait.  This gait abnormality is 

addressed and alleviated by an extension assist device built within the prosthetic knee.  

With most extension aids, a terminal impact results at the end of the swing phase (caused 

by the contact of the knee’s mechanism and the hyperextension stop), however flawed 

this may seem to the designer concerned about impact loads, many amputees prefer a 

noticeable signal that the limb is in position for loading.   

Ground clearance is the fundamental design goal of prosthetic knees when 

considering the swing phase of prosthetic gait.  Polycentric four-bar knees, like that of the 

Otto Bock 3R55, were designed to ‘shorten’ the limb in order to achieve clearance 

between the toe and ground during mid-swing, preventing the stubbing of the toe (leading 

to falls).  Beyond ground clearance, prevention of excessive heel rise is paramount; 

during flexion, if the heel rises too far (knee angle exceeding 60 degrees), the rotational 

speed of the prosthetic shank is too slow under the action of gravity to ready the 

prosthesis for heel strike, thus resulting in ‘excessive’ knee flexion leading to buckling 

under stance loading.  The prosthesis thus requires a fast extension phase, and the 

extension assist device must provide the necessary moments to perform to these optimal 

swing characteristics. 
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Figure 4-2 illustrates the dynamics of the knee angle over the gait cycle and the 

importance of the knee angle between the flexion and extension phase.  As shown, if the 

knee does not resist motion beyond 60 degrees during mid-swing, the swing phase ends 

at a knee flexion exceeding what it should during the beginning of stance, which will 

inevitably lead to buckling and falling. 

 
Figure 4-2. Knee Angle vs. Gait – Shown with and without Excessive Heel Rise 

With excessive heel rise is shown as gray, without, in red. 
 

Under these conditions it seems as though a simple elastic strap would suffice to 

meet these extension characteristics, however, though the moments exerted by the strap 

do meet the necessary criteria of eliminating excessive heel rise, it does not meet the 

behavior necessary for the amputee to sit (a common position of everyday life).  When 

seated, the prosthetic knee and extension assist device must not exert extension moments 

causing the prosthetic limb to ‘kick-out’ to full extension; they must be designed in such 

a way that their influences (applied extension moments) are at a maximum near 60 

degrees of knee flexion (to account for proper swing) and then begin to decrease 

afterwards to zero near 90 degrees to account for the seated position.   
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Figure 4-3 depicts the optimal influence of an extension aid on a prosthetic knee.  

Notice the gradual increase of the applied extension moment to a maximum at a knee 

flexion nearest 60 degrees to account for normal gait, and a sharp decrease following to 

minimum near 80-90 degrees in order to prepare the knee for the seated position. [29] 

 
Figure 4-3. Optimal Influence of Prosthetic Knee Extension Assist 

 

 

4.4 Concept of Bistability 
 

Bistability is easily associated with the well-known ball and hill analogy shown in 

Figure 4-4.  Bistability occurs when an object has two points where its’ potential energy 

is at a minimum.  These points are known as stable equilibrium points, labeled (A) and 

(B) in Figure 4-4.  In order for the particle to deviate from either of these positions, an 

external energy must act in a way to force the particle from its resting state.  If the ball is 

resting in position (A) and is pushed to the right to point (C), the ball has the ability to 

balance itself at this point and be in equilibrium also; point (C) is known as the unstable 

equilibrium.  If any external energy is added to the ball at the unstable equilibrium point,  
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it will always assume one of its stable equilibrium points (A) or (B).  Stability refers to 

the ability to resist or recover from small displacements. 

 

 
Figure 4-4. Bistability Analogy with a Ball and Hill 

 
The bistable compliant extension aid addressed in this paper must perform as the 

ball would on the hill.  Point (A), when the ball is at its first equilibrium point coincides 

to the prosthetic knee during stance.  When energy is added to the knee, via inertia during 

swing, it will tend to return back to its original position accommodating stance at heel 

strike.  When enough energy is added to the knee, like when crouching to sit down, it 

transitions to a second equilibrium point, just as the ball does at point (B). 

 

 

4.5 Bistable Compliant Extension Aid (BCEA) Design 
 

The BCEA was designed on the existing polycentric frame of the Otto Bock 

3R55.  A simplified four-bar schematic was used by converting the top link of the 

mechanism to ground, shown in Figure 4-5.  The BCEA was pre-assembled as a straight, 

unstressed polypropylene copolymer beam measuring 1mm x 5mm x LBCEA, where LBCEA 

is the length parameter whose optimal length was determined and added to the four-bar 

frame via pinning it to the existing anterior-bottom pin (pin 2 in Figure 4-6(a)).   
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Figure 4-5. Knee Mechanism Simplification Model 

 
After the BCEA was inserted into the model as a straight unstressed beam, 

displacement loading was applied to the top of the BCEA link and it was moved in the 

manner shown in Figure 4-6(b).  Once the top of the BCEA was aligned with Pin 1, it 

was fixed to the top link of the mechanism (shown as ground) as seen in Figure 4-6(c). 

 
  (a)                            (b)                            (c) 

 
Figure 4-6. Otto Bock Knee Mechanism with BCEA Assembly  

(a) pre-assembly, (b) mid-assembly showing pre-stress stepping motion of top pin,  
(c) final assembly. 

 



www.manaraa.com

    

70 

Pre-stressing the BCEA into position (as opposed to creating an un-stressed 

curved beam) was a critical step ensuring that bistability was achieved.  Bistability allows 

the knee mechanism to reach a stable equilibrium point, like those needed when standing 

and sitting (0 and 90 degrees of flexion).  By pre-stressing the BCEA, we were able to 

achieve a ‘snap-phenomena’ resulting in the desired bistability and extension moments at 

the appropriate degree of knee flexion (discussed in more detail in results section). 

The length of the BCEA was optimized by evaluating the lengths which produced 

an arc-angle, Φ, ranging from 0 to π/2, shown in Figure 4-6.  Note that the arc-angle is 

defined after pre-stressing the assembly into the position shown in Figure 4-6(c).  For 

simplified design purposes, the final shape of the BCEA (shown in Figure 4-6(c)) was 

assumed to be circular.  Arc-angles which produced BCEA curvatures exceeding a 

quarter-circle were also evaluated but produced results outside of the set criteria and thus 

were not included here. 

Optimization of the geometry was conducted by looping an FEA model to run a 

knee flexion simulation from 0 to 90 degrees, over a series of BCEA lengths (LBCEA), and 

the resulting extension moment characteristics were compared with the optimal influence 

shown in Figure 4-3.  The overall arc-length, LBCEA, was evaluated using geometry 

parameters shown in Figure 4-7. The max arc-angle, Φmax, was defined and used to alter 

LBCEA incrementally in order to better understand how the length of the BCEA affected 

its function. 
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Figure 4-7. Design Approximation of the BCEA Geometry 

 
 

The geometric input Φmax, was broken into a prescribed number, δ, of segments, 

yielding the step arc-length (3) of the BCEA which was then used to create the overall 

length, LBCEA.   

2
0 πφ ≤≤      (1) 

anglemax
2max ==
πφ    (2)  

δ
φ

φ max=increment     (3) 

  
incrementjφφ =  , j=1,2,3…(1-δ)       (4) 

 
From Figure 4-6, LBCEA can be equated to the arc-angle Φ by equations (5) and (6) 

as a function of the length of the anterior link, LANT, of the 3R55 knee mechanism. 
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LBCEA= RΦ   ,   0 < Φ < π/2         (6) 
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For the extreme conditions, Φ=0 and π/2, LBCEA was calculated using equations (7) 

and (8). 

LBCEA = LANT    , Φ=0        (7) 
 

LBCEA = 
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛

4
sin4 π

πANTL
   , Φ= π/2       (8) 

 
Once the desired LBCEA was calculated, it was inserted into the model as described 

previously, and was then pre-stressed into the analysis-ready position. 

 

 

4.6 Analysis and Results 
 
Figure 4-8 depicts the free-body-diagram of the knee model used for analysis.  

Reaction forces at pin joints 1 and 2 were calculated over a knee flexion from 0 to 90 

degrees, as well as the reaction moment applied at pin 1 as a result of the BCEA. 

 

 
Figure 4-8. Free-Body Diagram of Knee and BCEA 
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Successful geometry optimization was determined by the criteria of maximum 

reaction moment closest to 60 degrees of flexion followed by a sharp decrease in the 

reaction moment closest to 0 N-m on, or before 90 degrees of flexion (as shown in Figure 

4-3). 

 
Figure 4-9. BCEA Extension Moment vs. Knee Flexion 

 
The extension moment and knee flexion data, when graphed over 0-90 degrees of 

knee flexion yield results that model closely to that of the pre-design criteria depicted in 

Figure 4-3.  Figure 4-9 graphs the entirety of the extension moment results defined by 

equations (1)-(3), with δ = 30, and also shows the variation of the extension moment 

magnitude with respect to LBCEA.  Each curve represents a different value for LBCEA, with 

LBCEA(Φ=0) furthest to the left, and LBCEA(Φ=π/2) furthest to the right. 

Using Figure 4-9, it can be said that LBCEA would be the most functional, with 

regards to prevention of excessive heel rise and correct extension characteristics during 

90 degrees flexion, at an arc-angle closest to π/2 (Φ=π/2).  As shown in Figure 4-9, the 

moment increases over flexion, then ‘snaps’ to zero (or nearly zero); this ‘zero’-moment 
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point is a stable-equilibrium point, and defines when the knee is in the sitting position and 

will not return back to stance unless acted upon.  It seems as though the data smoothly 

returns to zero, but in fact the data points jump from a high magnitude to relative zero in 

one step, which is a result of the ‘snap phenomena’. 

The snap phenomena is brought upon the BCEA when the flexion of the knee has 

reached a point of instability, and is then pushed passed that point until the BCEA snaps 

into its second equilibrium position.  The end-conditions of the BCEA allow it to rotate 

freely at its bottom while the top remains fixed to the knee’s top link, which causes the 

segment to rotate uniquely.  Figure 4-10 illustrates the snap phenomena by showing the 

BCEA in its initial point (a), its maximum-extension-moment point, (b), pre-snap 

position (c) and the seated position (d).  Between 60-85 degrees of flexion, the BCEA 

snaps through as a result of the extension moments being relieved by a rotation in pin 2.  

Figure 4-11 highlights the extension moment key-points: maximum extension, snap 

phenomena and stable equilibrium. 

 
Figure 4-10. BCEA Snap Phenomena  

Knee flexions corresponding to: (a) initial position, (b) maximum extension moment, (c)  
pre-snap, (d) seated position 
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Figure 4-11. BCEA Extension Moment Graph with Labeled Key-points  

 
 

The data for the curves nearest an arc-angle of π/2 (Φ=π/2) is tabulated in Table 

4-2.  As LBCEA increases in length, the maximum applied extension moment increases as 

well.  With that, the angle of knee flexion corresponding to the maximum extension 

moment increases.  The increase in maximum extension moment with respect to the 

length of the BCEA corresponds to the compliant member storing more of the strain-

energy during rotation.  The longer the compliant link, the more strain-energy can be 

stored, which will then be released at the point of snap. 
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Figure 4-12. BCEA Extension Moment vs. Knee Flexion – Optimal Geometry Sets 

 
Table 4-2. Extension Moment Data for Optimized LBCEA 

 
 
 
 
 

 

 

 

Optimally, the maximum extension moment should correspond to a knee flexion 

of 60 degrees, along with a snap angle between 80 and 90 degrees.  The particular data 

sets listed in Table 4-2 and Figure 4-12 depict the LBCEA values necessary to optimize the 

geometry to meet the design requirements. 

 

LBCEA Extension Moment 
(mm) Maximum Knee Angle 

at maximum
Knee Angle 
at snap 

 (N-m) (Degrees) (Degrees) 
93.584 17.942 54 72 
94.172 18.525 56 75 
94.787 19.096 58 78 
95.430 19.654 60 80 
96.103 20.201 62 83 
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4.7 Knee and BCEA Unloading After Snap 
 
 The data depicted in Figures 4-9, 4-11 and 4-12 all have not definitively shown 

the second stable equilibrium position (which would naturally follow BCEA snap, and is 

defined by the resulting BCEA moments to be 0 N-m).  The resulting loads which were 

continually placed on the mechanism during analysis in ANSYS, in order to force the 

mechanism through 90 degrees of flexion, prohibit the BCEA from being unloaded 

completely.  In order to define this second point of stable equilibrium, unloading of the 

knee and the consequent results were analyzed.    

 Figure 4-13 depicts the unloading characteristics of the mechanism from 90 

degrees of flexion (post-snap) to zero degrees of flexion (stance).  It can be shown that 

the unloading curve has many of the same characteristics of the loading curve (shown in 

Figure 4-11), with a resultant maximum flexion moment as well as a snap-phenomena 

resulting in the release of strain-energy via a rotation in Pin 2. 
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Figure 4-13. BCEA Unloading Curve 

 
 The characteristics of the unloading curve distinctly define the second stable 

equilibrium point (seated position).  This point was unable to be correctly shown in 

previous ‘loading’ curves due to the fact that displacement loading was continuously 

being applied following snap.  Physically speaking, if the mechanism were loaded 

beyond the snap point of knee flexion and the load released, the knee would assume a 

stable equilibrium point at a slight decrease in knee flexion all due to the presence of a 

small knee extension moment following snap.   

Figure 4-14 overlays the unloading curve on the loading curve and labels the 

inherent key-points during both situations.  The snap-phenomena of flexion and the snap 

phenomena of extension result in each of the positions ‘second’-equilibrium points; the 

flexion-snap phenomena’s second equilibrium point being the seated position, while the 
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extension-snap phenomena results in the knee’s stance position.  All stable equilibrium 

points are also defined and labeled on the graph. 

 
Figure 4-14. Complete BCEA Cycle: 90 Degrees of Flexion and Extension 

 

 

4.8 BCEA Stress Analysis and Factor of Safety 

Stresses which were induced within the BCEA during flexion were calculated 

using ANSYS.  A static stress analysis was conducted at each degree of knee flexion and 

the maximum stress state analyzed (i.e. the position of the knee and BCEA for which the 

maximum stress was discovered).  Geometrically and analytically, the maximum stress 

state was found to be the position just before snap, 82 degrees of flexion.  The stresses 

ranged from 6.1252 MPa to 28.047 MPa, and the stress magnitudes over the length 

(LBCEA) are shown in Figure 4-15.  
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Fully reversed stress cycles occur over the knee flexions/extensions shown in 

Figure 4-15 (90 degrees of flexion and subsequent extension) as a result of similar 

force/moment reactions over flexion and extension.  The BCEA stress analysis and the 

corresponding factor of safety for the optimized BCEA geometry (Φ=π/2) are 

summarized in Table 4-3.  These values are based off the yield strength of polypropylene 

Sy = 34 MPa [8]. 

 

 
Figure 4-15. BCEA Stress Magnitude and Distribution at Maximum Stress State 

 
Table 4-3. BCEA Stress Summary 

 
Max. Stress

(MPa) 
Min. Stress

(MPa) 
Factor of Safety 

28.047 6.1252 1.2123 
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4.9 BCEA Design Conclusion 
 

The bistable compliant extension aid developed within this CAD structure shows 

promise in its ability to conform to the principles of prosthetic swing needed for normal 

gait.  While the data shows the selection of geometric variations to be of a wide-range, 

the corresponding data shown in Figure 4-12 develops itself well into those criteria 

outlined in its design and allows for further geometric refinement based on amputee 

needs. 

The data collected from the design of the BCEA contributes to the validation of 

compliant mechanisms even further into the prosthetics industry.  This chapter has 

introduced a compliant prosthetic knee extension aid design that has the ability to apply 

the necessary extension moments in order for a prosthetic knee to function properly 

during the swing phase and while seated. 
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Chapter 5  Proprioception via Variable Internal Socket Stress Patterns 

 

A finite element model was constructed to simulate a below-knee prosthesis 

during the swing phase of gait in order to show the stress variations on the inner surface 

of a prosthetic socket and to pose the hypothesis of increased proprioception based on 

these variable stress patterns.  The hypothesis is that the changing loads caused by the 

bending of the BCEA will be felt by the amputee and will give him/her a sense 

(proprioception) of the amount of flexion in the prosthetic knee.  The external forces 

applied to the system were based on the Bistable Compliant Extension Aid design and 

were applied via direct loading of the finite element model.  The criterion adopted for the 

proprioception hypothesis was variable stress patterns on the prosthetic socket over 

different degrees of knee flexion without failure of the polypropylene socket.  The 

interface stresses varied in magnitude and location over knee flexion angles and can be 

used to develop the hypothesis of proprioceptive feedback via variable stress patterns on 

the inner surface of the prosthetic socket.   

 

 

5.1 Interface Mechanics and Proprioception 
 

The biomechanical interaction between the residuum and socket, also known as 

interface mechanics, has evolved into discrete numerical stress analyses with the use of 

modern finite elements software packages.  Finite element analysis is able to produce 
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approximate analytical solutions in the prosthetics field (as well as many other 

engineering fields) to problems in which no simple closed-form solution exists.   

The advantages that finite elements and interface mechanics bring to the 

prosthetics industry are inherent in the functional design of each prosthesis: the ability to 

discretely analyze the stresses and their subsequent capacity to affect the functional 

design of the prosthesis.  Research centered on interface shear and compressive stresses 

have consistently been focussed on their ability to apply on-hand data to form-fit a better 

prosthetic socket allowing for an ‘optimal prosthesis’ both in comfort and control.   

Control over lower-limb prostheses during swing has been an issue addressed 

heavily as of late through means of developing prosthetic knees which are able to apply 

active moments at key points during swing.  The Power Knee by Ossur is an example of 

such a knee which can adapt to swing phase characteristics in order for the amputee to 

hold better control over their gait cycle.  These knees hold state-of-the-art technology and 

also own a price-tag to match, thus restricting its commonality within the lower-limb 

amputee population.  

Proprioception, the sense of the orientation of one’s limbs, is the ‘natural’ method 

of offering complete control over biological gait.  Prosthesis control via proprioceptive 

feedback could offer potential advantages even over the active prosthetic knee(s) on the 

market by providing a more natural/biological control as opposed to motor driven 

control.  Even better, by enhancing proprioception via inexpensive mechanical means, the 

greater majority of the lower-limb amputation population would be offered the ability to 

share these control advantages.   
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The BCEA, developed in the last chapter, offers ‘optimized’ extension moments 

applied to the knee mechanism and thus the prosthetic socket over a range of knee flexion 

angles.  This chapter proposes a method of providing and analyzing proprioceptive 

feedback via variable stress patterns imposed on the inner part of a prosthetic socket as a 

result of forces and moments induced by the BCEA.   

 

 

5.2 Finite Element Design Characteristics 
 

Geometry, element properties and boundary conditions develop the accuracy, 

complexity and computational intensity of the finite element model, each being 

developed and enhanced by continuing research.  While simplifications of each design 

characteristic can offer the foundation for state-of-the-art research, increasing the 

complexity allows for the accuracy of the analytical solution to mirror itself closer to 

physical results (that may be experimentally determined). 

The input geometry emphasizes the importance of stress concentrations and the 

correct loading of differing materials over their boundaries (i.e. over solid-contact 

points).  Variations of geometries are common when modeling the residual-limb; these 

differentiations from one researcher to another associate themselves with those 

complexities of biology: bone, soft-tissue, epidermis, cartilage etc.  In order to increase 

the complexity of the residuum geometry, more complex methods of modeling must be 

used: X-ray, computed-tomography (CT) scan and MRI as examples [33]. 

The increasing complexities of the model geometries bring with it the need for the 

introduction of new materials and their properties; when the bones, muscles and skin are 
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introduced into the model, these properties must also accompany them in order to justify 

their interactions.  The material properties of biological tissues bring complexities that 

can only be solved for by clinical testing.  Many of these properties are approximations to 

better serve the models to which they are applied, but the clinical-data is becoming 

readily available and can be used to run statistical measurement and approximation 

determination. 

Finally, the boundary conditions within the finite element model tell the program 

how to treat two nodes in contact from two different bodies, i.e. the residual limb and the 

prosthetic socket.  Heavy approximations have been made relating to the boundary 

conditions in interface mechanics due to: (1) the complexities of the materials undergoing 

loads, and (2) the computational intensity increases and in some cases a solution is 

indeterminate.  Three cases of socket-residuum contact have been employed by 

researchers: the fixed interface, partially fixed interface and free [33].  The completely 

fixed interface is the least computationally intensive, however this boundary condition 

allows for the residual tissue to undergo tensile loading (which is not the case with 

prosthetic limbs, unless suction is present).  Partially fixed allows the researcher to 

remove these tensile loads through a post-processing command, and the free interaction 

removes these loads completely before the analysis is run.  The approximation of the 

boundary condition must be analyzed in order to determine the validity of the analysis 

and can in turn lead to false results if not done carefully. 
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5.3 Modeling 
 

The CAD model of the lower-limb prosthesis used in this analysis was 

constructed in a SolidWorks environment and included a simplified residual limb, 

prosthetic socket, the Otto Bock 3R21 knee frame, and simplified shank and foot (shown 

in Figure 5-1).  In order to introduce the BCEA to the model shown, the reaction forces 

and moments that were calculated using ANSYS were directly applied to the knee frame; 

this was done due to the inefficiencies and nonlinearities in the model and the errors 

induced by solving the FEA with large deflection as well as rigid body motion (quite 

simply, large errors were experienced when the BCEA was directly modeled in the 

system).   

 
Figure 5-1. Complete Model of Lower-Limb Prosthesis 
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The prosthetic socket and residuum were modeled with a bonded global contact; 

the program bonds the source and target entities, which may be touching or within small 

distances from each other.  As mentioned, this is the simplest approximation in the 

boundary conditions listed previously, and will affect tensile stresses on the residual limb 

(which were not being analyzed here).  The socket was constructed out of polypropylene 

copolymer (Elastic Modulus = 8.96e08 N/m^2, Poisson’s Ratio = 0.4103, Shear Modulus = 

3.16e08 N/m^2 and Density = 2.77e-05 kg/m^3), and the residuum was simplified and 

modeled as rubber (Elastic Modulus = 6.099e06 N/m^2, Poisson’s Ratio = 0.49, Shear 

Modulus = 2.899e06 N/m^2).  Each of these elements’ geometries were simplified and 

approximated as cylinders in order to ease the computational intensity (high-end 

modeling techniques as described in Chapter 3 could propose further advancements to 

this simplification).  The purpose of this chapter is to develop a finite element analysis 

simulation of the introduction of the BCEA to the model and the resulting stresses 

between these two surfaces (residuum and socket) analyzed. 

The knee mechanism was constructed from titanium and steel (as built) with very 

few design simplifications only associated with the pinning of the mechanism together.  

The shank and foot were also constructed of metal and were assigned the properties of 

steel. 

The simplifications imposed on this model (i.e. residuum geometry) are such that 

the work here should only be used for analytical approximations and further refinement 

of the model should be considered in order to closely mirror real-world situations. 
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5.4 Applied Loads 
 

In order to introduce the BCEA to the model shown in Figure 5-1, the reaction 

loads as calculated from the BCEA were applied to the top bracket of the knee 

mechanism (as determined by the ANSYS FEA) and were introduced to the model using 

direct transfer loading in the finite element programming.  Figure 5-2 depicts the resultant 

extension moments induced by the BCEA which was applied to the model, summarized 

in Table 5-1. 

 
Figure 5-2. Applied BCEA Moments 

 
Table 5-1. Summary of BCEA Applied Extension Moments 

 
Extension Moment 

Maximum Knee Angle 
at maximum

Knee Angle
at snap 

(N-m) (Degrees) (Degrees) 
20.201 62 83 
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The reaction forces at the top anterior and posterior pins of the prosthetic knee 

were also developed in the BCEA design and are shown graphically in Figure 5-3.  

Figure 5-3 depicts the magnitude of the anterior and posterior pin reaction forces versus 

the knee flexion angle.  The reaction forces of the posterior pin were very small and are 

shown near zero, while the anterior pin forces were more prominent.  These reaction 

forces were separated into the x and y directions and applied to their respective pin 

locations labeled in Figure 5-4 along with the extension moments discussed.  

 
 

Figure 5-3. BCEA Reaction Forces vs. Knee Flexion 
Anterior (black) and Posterior (Blue) 

 
Table 5-2. Summary of BCEA Applied Reaction Forces 

 
Reaction Force 

Pin Maximum Min 
 |FX| |FY| |FX| |FY| 
 (N) (N) 

Top-Anterior 2.287 1.199 0.00116 0.135 
Top-Posterior 4.74e-5 1.929e-5 2.11e-10 2.12e-10 
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Figure 5-4. Free Body Diagram of the Prosthetic Knee’s Top Bracket and Socket 

 
 

These variable external loads were the driving forces behind stress variations 

within the prosthesis and were analytically calculated using ANSYS.  Based on 

magnitudes of the forces and moments calculated, the moments applied as a result of the 

BCEA will have more impact on the stresses induced within the prosthetic socket than 

those of the reactions forces (which were induced as good measure). 

 

 

5.5 Analysis and Results 
 

Stresses induced on the inner part of the prosthetic socket were evaluated for each 

degree of knee flexion and stress magnitude photos were created using SolidWorks 

(COSMOSWorks).  The external loads (as discussed previously) varied from small knee 

flexions to large and induced varying stress magnitudes.  The criterion we adopted for 

analyzing proprioception was that the stresses applied to the inner part of the prosthetic 
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socket showed distinct variation over knee flexions and did not cause failure of the 

polypropylene socket.   

When conducting interface mechanics research it is crucial to determine whether 

the stresses exposed to the residuum cause tissue damage, which could lead to necrosis 

and further injury to the residual limb and surrounding tissues.  This chapter evaluates 

stresses at the inner socket interface and were analyzed as opposed to the interface 

stresses on the residual limb due to higher amounts of error present as a result/lack of 

residual sock (which was unaccounted for in the present model), soft-tissue, epidermis 

and bone.  The simplifications imposed on the model to make it less computationally 

intensive also lend themselves to higher error and less justification when crossing 

material interfaces, therefore only the stresses on the inner socket wall were analyzed.  

For this reason, ensuring that the stresses induced on the residual tissue would not cause 

further tissue damage, was not adopted for this thesis, but should be analyzed with further 

expansion of the geometry and before any clinical testing.  

Stress ‘pictures’ of the inner cone of the prosthetic socket were developed for 

each degree of knee flexion ranging 0-90 degrees as a result of static failure analysis by 

the von Mises principle.  These results are summarized in Figure 5-5, which shows the 

stresses from 15-90 degrees for every 15 degree step.  As shown, the stresses increase 

over flexions from 0 degrees to 60 degrees and then begin to decrease.  This is 

characteristic of the moments shown in Figure 5-2; Figure 5-5 (F) occurs post-snap, 

which is a result of the knee and BCEA ready for the seated position.  These stress 

patterns offer initial validation that the BCEA will offer variable stress patterns on the 

inner part of the prosthetic socket.   
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Figure 5-6 emphasizes the stress variations over the results.  Figure 5-6 (A) and 

(D) depicts the lowest stress states, resulting near each of the knee’s stable equilibrium 

points (stance and sitting).  Figure 5-6 (C) is a result of the maximum extension moments 

which occur at 62 degrees of flexion, while (D) is an intermediate point between (A) and 

(C).  These stress variations are a direct result of the BCEA and pose the hypothesis of 

increased proprioception via stress variations over the swing phase.   Table 5-3 

summarizes the stress results at maximum knee flexion (62 degrees), shown in Figure 5-6 

(C). 

 
 

Figure 5-5. Stress Patterns on Inner Part of Prosthetic Socket by Knee Flexion 
(A)  15 degrees, (B) 30 degrees, (C) 45 degrees, (D) 60 degrees, (E) 75 degrees, (F) 90 degrees 

 
 

 
Figure 5-6. Stress Pattern Summary Over Key Knee Flexions 

(A) 8 degrees, (B) 20 degrees, (C) Max Extension Moment (62 degrees), (D) 83 degrees 



www.manaraa.com

    

93 

Table 5-3. Surface Stress Summary at 62 Degrees of Flexion 
 

Surface Stress Summary at 62 Degrees 
 Value 
Sum 10.613 MPa 
Average 14.719 kPa 
Maximum 51.705 kPa 
Minimum 0.98013 kPa 
RMS 18.103 kPa 
Safety Factor 657.64  

 

These results correspond to the BCEA designed previously; the magnitude of the 

forces applied by the compliant segment (BCEA) can be increased or decreased with the 

geometry (its width).  The safety factor above is large and can be decreased with 

increasing the applied forces.  The resulting strains caused at maximum knee flexion 

were also analyzed and are shown in Figure 5-7, and summarized in Table 5-4. 

 
Figure 5-7. Strain at Maximum Knee Flexion 
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Table 5-4. Surface Strain Summary at 62 Degrees of Flexion 
 

Surface Strain Summary at Max Knee Flexion 
 Value 

Sum 0.059192 
Average 8.2097e-005 
Maximum 0.00028839 
Minimum 5.4667e-006 
RMS 0.00010097 

 
 

In each of the stress photos, a noticeable stress variation is located near the top of 

the illustration, as shown in Figure 5-8.  This stress ‘anomaly’ is not an anomaly, but a 

result of the fixation applied to the prosthetic knee’s top bracket and the socket.  The 

model is constructed in a way that the polypropylene socket at the surface of contact 

between the knee’s top bracket is fixed at each node (as mentioned previously in 

boundary conditions), and restricts stresses, strains and deflections at the contact pairs.  

Figure 5-9 shows the area of contact and the pairs that are bonded together which form 

this stress diagram anomaly.  In reality, the fixation methods of the prosthetic socket to 

the knee will cause stress concentrators via screws, pins or bolts, and will result in higher 

stresses in the area highlighted as opposed to the lower stresses calculated here. 
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Figure 5-8. Stress Anomaly Due to Knee Fixation 

 

 

 

 

 

 
Figure 5-9. Socket and Knee Fixation/Contact Area 
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5.6 Proprioception and Variable Stress Conclusions and Future Work 
 

The stresses and strains induced over 90 degrees of flexion varied over the results 

as shown, and can be used to develop the hypothesis of increased proprioception based 

off variable stress patterns in a prosthetic socket as a result of a bistable compliant 

extension aid.  The strains calculated at the maximum flexion moment knee angle were 

also analyzed in order to develop the concept of socket deflection under flexion, and 

showed that the moments caused by the BCEA were sufficient to cause small strains 

which can be ‘optimized’ further by altering the reaction forces brought on by the BCEA 

(via altering its geometry).   

These analytical results form the foundation for the measurement/increase of 

proprioceptive feedback in lower-limb prostheses by analyzing stress variations within 

the prosthetic socket.  These surface stresses and strains can be used to justify further 

complexity to the FEA model and calculation of the surface stresses induced on a 

modeled residual limb.  Stresses on the modeled residual limb, when calculated 

efficiently, can produce pre-clinical testing results and the basis for experimentation of 

stress patterns versus proprioception. 
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Chapter 6  Conclusions 
  

This chapter focuses on the conclusions of this thesis, the contributions made to 

the mechanical engineering field and recommendations for future work are provided. 

A bistable compliant extension aid (BCEA) which has the ability to conform to 

the necessary functional requirements of prosthetic swing of an above-knee prosthesis 

has been developed and optimized.  The resulting BCEA extension moments were 

analytically calculated using ANSYS and were shown to provide the necessary moment 

characteristics of a prosthetic knee extension aid.  A method for evaluating prosthetic 

proprioception over the swing phase by interface stresses between the prosthetic socket 

and residual limb, as a result of the bistable compliant extension aid, has been introduced.  

These stresses on the inner cone of the prosthetic socket were calculated using 

COSMOSWorks.  The results were plotted as stress magnitude photos and were visually 

analyzed over knee flexions from 0 to 90 degrees, and showed the necessary magnitude 

variations for validation of the proprioception-via-stress-variation hypothesis. 

 

 

6.1 Contributions 
 

As discussed in Chapter 3, interface mechanics have been researched in depth and 

have shown promise in future research and application.  Interface mechanics, as shown in 

this thesis as well as other research, have the ability to provide ground-breaking 
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advancements in the field of prosthetics in the form of proprioceptive feedback.  

Compliant mechanism technology has also shown promise in their applications in 

prosthetic joint research.  The primary contributions made by this research are as follows: 

• A compliant link (BCEA) has been developed that can act 

efficiently as a prosthetic extension aid by providing the necessary 

extension moments during key knee flexions.  The geometry of the 

BCEA was optimized in order to meet these functional swing-

moment requirements, and the resulting forces on the knee 

mechanism were analytically calculated in order to analyze the 

stresses induced on the prosthetic socket by the compliant add-on.  

The BCEA design specialization also offers a way of optimizing a 

prosthetic knee during swing (applied extension moments) to any 

particular patient by altering the geometry of the compliant 

segment. 

 
• The external forces and moments induced by the bistable 

compliant extension aid were applied to a finite element model of 

an above-knee prosthesis.  The interface stresses on the inner-

surface of the prosthetic socket were analyzed in order to lay the 

foundation for the measurement of proprioceptive feedback by 

means of induced variable stress patterns.  This hypothesis was 

analytically validated by a simplified finite element model and laid 

the groundwork for further model refinement. 
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6.2 Suggestions for Future Work 
 

Future work should be directed at the refinement and advancement of the finite 

element model geometries and material properties used in order to better estimate the 

interface mechanics developed in this thesis.  Residuum tissues such as the epidermis, 

bone and cartilage should be added to the residual geometry.  A residual sock should be 

included, and the material properties should be verified.  Once the model closely reflects 

actual geometries, the analysis should focus on the stresses on the residual limb rather 

than the prosthetic socket’s inner surface.  Analytical results should verify that the 

induced stresses do not cause tissue trauma to the residual limb.   

The use of compliant mechanism technology offers several design advantages: if 

the stresses induced on the residual limb are too high, the BCEA extension moments 

could be optimized by optimizing the width of the BCEA geometry; while if the stresses 

on the BCEA are too high, the thickness of the link could be optimized thinner to reduce 

these stresses.  These design advantages allow for further modification and research of 

the BCEA and how it affects the interface-stress proprioception theory. 
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Appendix I:  ANSYS Knee Code  
 
 
!*********************************************************************** 
!/INPUT,C:\DOCUME~1\aroetter\Desktop\KneeCode2,txt,,1 
!/CWD,'C:\Documents and Settings\amunoz4\' 
!*********************************************************************** 
 
FINISH 
/CLEAR 
 
/FILENAME, Knee 
/title,Knee 
 
/PREP7                         ! Enter the pre-processor 
 
 
 
!*********************************************************************** 
!*************** Model Parameters **************************************** 
!*********************************************************************** 
 
WRITE=1                        ! 1= Write output files, Else= Don't Write 
 
PI=acos(-1.) 
 
hp=6                             ! Posterior Thickness (mm) 
bp=17                            ! Posterior Width (mm) 
 
ha=2    ! Anterior Thickness (mm) 
ba=12    ! Anterior Width (mm) 
 
hb=26    ! Bottom Width (mm) (approx.)  
bb=5    ! Bottom Width (mm) (approx.) 
 
 
hc=5    ! Compliant Geometry 
bc=1 
 
 
K1=1e6                         ! Joint Stiffness 
 
 
 
!*********************************************************************** 
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!*************** Define Area ********************************************* 
!*********************************************************************** 
 
Ap = hp*bp                        ! Cross sectional area of posterior 
Izp= 1/12*bp*hp*hp*hp              ! Second Moment of Area (aka Area Moment of 
Inertia) 
Ixp= 1/12*hp*bp*bp*bp 
 
Aa = ha*ba                        ! Cross sectional area of anterior links 
Iza= 1/12*ba*ha*ha*ha              ! Second Moment of Area (aka Area Moment of 
Inertia) 
Ixa= 1/12*ha*ba*ba*ba 
 
Ab = hb*bb                        ! Cross sectional area of bottom link (approx.) 
Izb= 1/12*bb*hb*hb*hb              ! Second Moment of Area (aka Area Moment of 
Inertia) 
Ixb= 1/12*hb*bb*bb*bb 
 
Ac = hc*bc                        ! Cross sectional area of compliant link  
Izc= 1/12*bc*hc*hc*hc              ! Second Moment of Area (aka Area Moment of 
Inertia) 
Ixc= 1/12*hc*bc*bc*bc 
 
 
!*********************************************************************** 
!************** Define Keypoints ****************************************** 
!*********************************************************************** 
 
! Create Keypoints: K(Point #, X-Coord, Y-Coord, Z-Coord) 
 
K,1,0,0,0,                !(mm) 
K,2,23.62,0,0,            !(mm) 
K,3,35.52,-85.58,0,      !(mm)  
K,4,35.52,-85.58,0,      !(mm)  
K,5,-12.74,-85.58,0,     !(mm)  
K,6,-12.74,-85.58,0,     !(mm)  
K,7,35.52,-85.58,1,      !(mm)  
K,8,-12.74,-85.58,1,     !(mm)  
K,9,-12.74,-85.58,0,     !(mm) 
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!*********************************************************************** 
!*************** Create Links ********************************************* 
!*********************************************************************** 
 
L,2,3                           ! Anterior link 
L,4,5                           ! bottom link 
L,1,6    ! Posterior link 
L,6,8    ! Pin Joint Direction Line 
L,4,7          ! Pin Joint Direction Line   
 
 
!*********************************************************************** 
!************ Declare Element Type  *************************************** 
!*********************************************************************** 
 
SECTYPE,   1, BEAM, RECT, , 0    ! Defines BEAM188 Properties 
SECOFFSET, CENT  
SECDATA,1,5,1,1,0,0,0,0,0,0  ! Defines BEAM188 Geometry 
 
 
ET,1,BEAM4    ! Element Type 1 - Rigid Links 
!KEYOPT,1,2,1 
!KEYOPT,1,6,1 
 
ET,2,COMBIN7,,1   ! Element Type 2 - Pin Joints 
 
ET,3,BEAM188   ! Element Type 3 - Compliant Link(BEAM188) 
!KEYOPT,3,2,1 
!KEYOPT,3,6,1 
 
!*********************************************************************** 
!************ Define Real Constants **************************************** 
!*********************************************************************** 
 
R,1,Ap,Ixp,Izp,hp,bp,            ! Properties of Posterior Links 
R,2,K1,K1,K1,0,0,0       ! Properties of the  pin joints 
R,3,Aa,Ixa,Iza,ha,ba,            ! Properties of Anterior Links 
R,4,Ab,Ixb,Izb,hb,bb,            ! Properties of Bottom Link 
!R,5,Ac,Ixc,Izc,hc,bc,          ! Properties of compliant Link 
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!*********************************************************************** 
!********** Define Material Properties *************************************** 
!*********************************************************************** 
    
MP,EX,1,207000             ! Young's Modulus of Elasticity Steel (MPa) 
MP,PRXY,1,0.29                ! Poisson's ratio 
 
MP,EX,2, 1400      ! Young's Modulus of Elasticity Polypropylene (MPa) 
MP,PRXY,2,0.4103                ! Poisson's ratio 
 
!*********************************************************************** 
!******************** Mesh ********************************************* 
!*********************************************************************** 
 
type,1                          ! Use element type 1 (Beam4) 
mat,1                           ! use material property set 1 
real,1                          ! Use real constant set 1 
 
LESIZE,ALL,,,2  
LMESH,3,3                      ! Mesh Posterior Link 
 
real,3                          ! Use real constant set 3 
 
LMESH,1,1   ! Mesh Anterior Link 
 
real,4    ! Use real constant set 4 
 
LMESH,2,2   ! Mesh Bottom Link 
 
 
nx = 12.74   ! Initial x position for prestressed link (xdirections) 
ny = 85.58   ! Initial y position for prestressed link (ydir) 
 
n_abs = SQRT(12.74*12.74+85.58*85.58) 
 
 
 
Delta = 2   ! NUMBER OF INCREMENTAL CHANGES IN 
COMPLIANT LINK  
 
 
 
phi_max = PI/2   ! deleted /2 
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phi_incr = phi_max/Delta 
*DO,j,0,Delta,1   ! Begin the Compliant Link Creation Loop 
!*********************************************************************** 
!************** DEFINE COMPLIANT ************************************* 
!*********************************************************************** 
 
phi = j*phi_incr   ! Defines the "Arc Angle" 
 
*IF,j,EQ,0,THEN   ! First iteration: Arc Length=link length 
R = 1000 
L = n_abs 
*ELSE 
R = n_abs/(2*sin(phi/2)) 
L = R*phi 
*ENDIF 
 
 
DX = (L-n_abs)*nx/n_abs  ! Defines Steps in x direction 
DY = (L-n_abs)*ny/n_abs  ! Defines steps in y direction 
 
 
K,10,DX,DY,0   ! Defines keypoint (top of compliant link) 
L,9,10,                  ! Line #6 = Compliant Link 
 
 
type,3                         ! Use element type 3 (Beam188) 
mat,2 
!real,5  
secnum,1                         ! Makes BEAM188 active for Meshing 
LESIZE,6,,,32  
LMESH,6,6    ! Mesh Compliant Link 
 
!*********************************************************************** 
!***************** GET NODES ****************************************** 
!*********************************************************************** 
 
ksel,s,kp,,1 
nslk,s 
*get,nkp1,node,0,num,max      ! Retrieves and stores a value as a scalar or part of an array 
 
 
ksel,s,kp,,2 
nslk,s 
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*get,nkp2,node,0,num,max      ! Retrieves and stores a value as a scalar or part of an array 
 
ksel,s,kp,,3 
nslk,s 
*get,nkp3,node,0,num,max 
ksel,s,kp,,4 
nslk,s 
*get,nkp4,node,0,num,max      ! Retrieves and stores a value as a scalar or part of an array 
 
 
ksel,s,kp,,5 
nslk,s 
*get,nkp5,node,0,num,max      ! Retrieves and stores a value as a scalar or part of an array 
 
ksel,s,kp,,6 
nslk,s 
*get,nkp6,node,0,num,max 
 
ksel,s,kp,,7 
nslk,s 
*get,nkp7,node,0,num,max      ! Retrieves and stores a value as a scalar or part of an array 
 
ksel,s,kp,,8 
nslk,s 
*get,nkp8,node,0,num,max 
 
ksel,s,kp,,9 
nslk,s 
*get,nkp9,node,0,num,max      ! Retrieves and stores a value as a scalar or part of an array 
 
ksel,s,kp,,10 
nslk,s 
*get,nkp10,node,0,num,max 
 
ALLSEL 
 
 
TYPE,2 
mat,1                            ! use material property set 1 
REAL,2 
E,nkp3,nkp4,nkp7   ! Defines an element by node connectivity. 
E,nkp5,nkp6,nkp8 
E,nkp5,nkp9,nkp8 
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FINISH                          ! Finish pre-processing 
 
 
 
 
!*********************************************************************** 
!***************** SOLUTION ******************************************* 
!*********************************************************************** 
*get,date,active,,dbase,ldate 
*get,time,active,,dbase,ltime 
 
year=nint(date/10000) 
month=nint(nint(date-year*10000)/100) 
day=date-(nint(date/100))*100 
hour=nint(time/10000-.5) 
minute=nint((time-hour*10000)/100-.5) 
 
 
KEYW,PR_SGUI,1                 ! Suppresses "Solution is Done" text box 
/SOL                             ! Enter the solution processor 
 
/gst,off                         ! Turn off graphical convergence monitor 
ANTYPE,0                        ! Analysis type, static 
NLGEOM,1              ! Includes large-deflection effects in a static or full transient analysis 
LNSRCH,AUTO                     ! ANSYS automatically switches line search on/off 
NEQIT,50                        ! Set max # of iterations 
DELTIM,,0.0001                  ! Set minimum time step increment 
 
 
!*********************************************************************** 
!*********** Define Displacement Constraints ******************************** 
!*********************************************************************** 
 
DK,1,,0,,,UX,UY,UZ,ROTX,ROTY ! Pin Joint at Keypoint 1 
DK,2,,0,,,UX,UY,UZ,ROTX,ROTY ! Pin Joint at Keypoint 2 
 
!*********************************************************************** 
!********** Pre-Stress Compliant Member ************************************ 
!*********************************************************************** 
 
DK,10,,0,,,UZ,ROTX,ROTY,  ! Constrains the top pin before prestressing 
preload_steps = 10   ! Applies Prestress to Compliant Link in steps 
DK,1,ROTZ,0    ! Constrains KP1 while Prestressing 
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*DO,step, 1,preload_steps,1 
 
DK,10,UX,-DX/preload_steps*step 
DK,10,UY,-DY/preload_steps*step 
FK,10,MZ,4  ! Apply a moment to direct the Compliant Link during "assembly" 
LSWRITE, step 
*ENDDO 
!*********************************************************************** 
!************ Displacement Load ****************************************** 
!*********************************************************************** 
 
FKDELE,10,MZ 
DK,10,ROTZ,phi/2  
Maxrot = 191     ! Maximum rotation 
STABILIZE,CONSTANT,ENERGY,1e-5 ! Applies a stabilization damping action 
during snap phenomena 
*DO,step,1,90,1  
 
theta=step*PI/180 
 
DK,1,ROTZ,theta 
 
LSWRITE,step+preload_steps 
*ENDDO 
 
*DO,step,90,0,-1  
 
theta=step*PI/180 
 
DK,1,ROTZ,theta 
 
LSWRITE,191-step 
*ENDDO 
 
 
LSSOLVE,1,Maxrot 
STABILIZE   ! De-activates the Stabilize command 
FINISH                         ! Finish the solution processor 
 
!*********************************************************************** 
!************** Postprocessor ********************************************* 
!*********************************************************************** 
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/POST1                         ! Enter the postprocessor 
 
PLDISP,1                       ! Displays deformed & undeformed shape 
 
SET,LAST 
/REPLOT 
  
*DIM,ANTERIOR,TABLE,Maxrot,3 
*DIM,POSTERIOR,TABLE,Maxrot,3 
*DIM,COMPLIANT,TABLE,Maxrot,3 
 
*Do,i,1,Maxrot 
SET,i                            ! Read data for step "i" 
*GET,rotz1,Node,nkp1,ROT,Z      ! Assign ANTERIOR data to ANTERIOR table 
*SET,ANTERIOR(i,1),rotz1 
*GET,fx1,Node,nkp1,RF,FX 
*SET,ANTERIOR(i,2),fx1 
*GET,fy1,Node,nkp1,RF,FY 
*SET,ANTERIOR(i,3),fy1 
 
 
*GET,rotz1,Node,nkp2,ROT,Z       ! Assign POSTERIOR data to POSTERIOR table 
*SET,POSTERIOR(i,1),rotz1 
*GET,fx1,Node,nkp2,RF,FX 
*SET,POSTERIOR(i,2),fx1 
*GET,fy1,Node,nkp2,RF,FY 
*SET,POSTERIOR(i,3),fy1 
 
*GET,mz,Node,nkp10,RF,MZ       ! Assign COMPLIANT data to COMPLIANT table 
*SET,COMPLIANT(i,1),mz 
*GET,fx1,Node,nkp10,RF,FX 
*SET,COMPLIANT(i,2),fx1 
*GET,fy1,Node,nkp10,RF,FY 
*SET,COMPLIANT(i,3),fy1 
 
*ENDDO 
 
*IF,WRITE,EQ,1,THEN 
*cfopen,C:\DOCUME~1\aroetter\ANSYS_Results\index%j%,txt    
 
*vwrite,month,'-',day,'-',year,hour,':',minute 
%I %C %I %C %I %4.2I %C %2.2I 
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*vwrite,'ANTERIOR LINK' 
%C  
 
*vwrite,'ROTX (rad)','FX','FY' 
%-17C %-17C %-17C  
 
 
*vwrite,ANTERIOR(1,1),ANTERIOR(1,2),ANTERIOR(1,3) 
%16.8G %16.8G %16.8G  
*vwrite,'POSTERIOR LINK' 
%C  
 
*vwrite,'ROTX (rad)','FX','FY' 
%-17C %-17C %-17C  
 
 
*vwrite,POSTERIOR(1,1),POSTERIOR(1,2),POSTERIOR(1,3) 
%16.8G %16.8G %16.8G  
 
*vwrite,'COMPLIANT LINK, L = ',L 
%C %16.8G 
 
*vwrite,'MZ','FX','FY' 
%-17C %-17C %-17C  
 
 
*vwrite,COMPLIANT(1,1),COMPLIANT(1,2),COMPLIANT(1,3) 
%16.8G %16.8G %16.8G  
 
*cfclose 
*ENDIF 
FINISH 
 
 
!*********************************************************************** 
!********** DELETE COMPLIANT LINK *********************************** 
!*********************************************************************** 
 
/PREP7   
LCLEAR,6,6 
LDELE,6,6 
KCLEAR,11 
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*ENDDO 
 
!ANTIME,45,0.1, ,1,1,0,0       ! Animate 
 
 
!*********************************************************************** 
!******************* FINISH ******************************************** 
!*********************************************************************** 
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ANTERIOR LINK 
ROTX (rad)        FX                FY 
   0.0000000      -0.12275462      -0.25355748 
   0.0000000      -8.25826006E-02   2.21055171E-02 
   0.0000000      -6.57499172E-02   0.14110606 
   0.0000000      -5.61195668E-02   0.21184787 
   0.0000000      -4.97955059E-02   0.26050694 
   0.0000000      -4.53107617E-02   0.29694249 
   0.0000000      -4.19729793E-02   0.32580702 
   0.0000000      -3.94107317E-02   0.34960197 
   0.0000000      -3.74030535E-02   0.36981594 
   0.0000000      -3.58098291E-02   0.38739485 
  1.74532925E-02   1.16364284E-03   0.47859500 
  3.49065850E-02   4.37110341E-03   0.50367282 
  5.23598776E-02   6.51178243E-03   0.52845713 
  6.98131701E-02   7.60999646E-03   0.55293795 
  8.72664626E-02   7.68930672E-03   0.57710563 
  0.10471976       6.77245016E-03   0.60095079 
  0.12217305       4.88137068E-03   0.62446422 
  0.13962634       2.03725745E-03   0.64763689 
  0.15707963      -1.73942494E-03   0.67045996 
  0.17453293      -6.42890129E-03   0.69292461 
  0.19198622      -1.20120547E-02   0.71502223 
  0.20943951      -1.84703932E-02   0.73674423 
  0.22689280      -2.57860222E-02   0.75808212 
  0.24434610      -3.39416081E-02   0.77902742 
  0.26179939      -4.29203595E-02   0.79957175 
  0.27925268      -5.27059897E-02   0.81970670 
  0.29670597      -6.32826936E-02   0.83942389 
  0.31415927      -7.46351245E-02   0.85871497 
  0.33161256      -8.67483681E-02   0.87757156 
  0.34906585      -9.96079145E-02   0.89598528 
  0.36651914      -0.11319965       0.91394775 
  0.38397244      -0.12750980       0.93145053 
  0.40142573      -0.14252498       0.94848518 
  0.41887902      -0.15823210       0.96504324 
  0.43633231      -0.17461838       0.98111617 
  0.45378561      -0.19167134       0.99669543 
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  0.47123890      -0.20937879        1.0117724 
  0.48869219      -0.22772881        1.0263385 
  0.50614548      -0.24670970        1.0403851 
  0.52359878      -0.26631004        1.0539033 
  0.54105207      -0.28651862        1.0668844 
  0.55850536      -0.30732449        1.0793196 
  0.57595865      -0.32871688        1.0912000 
  0.59341195      -0.35068528        1.1025166 
  0.61086524      -0.37321935        1.1132605 
  0.62831853      -0.39630901        1.1234226 
  0.64577182      -0.41994434        1.1329938 
  0.66322512      -0.44411570        1.1419649 
  0.68067841      -0.46881362        1.1503267 
  0.69813170      -0.49402889        1.1580699 
  0.71558499      -0.51975255        1.1651851 
  0.73303829      -0.54597587        1.1716629 
  0.75049158      -0.57269040        1.1774937 
  0.76794487      -0.59988800        1.1826681 
  0.78539816      -0.62756082        1.1871762 
  0.80285146      -0.65570139        1.1910082 
  0.82030475      -0.68430260        1.1941544 
  0.83775804      -0.71335777        1.1966047 
  0.85521133      -0.74286068        1.1983490 
  0.87266463      -0.77280566        1.1993769 
  0.89011792      -0.80318759        1.1996782 
  0.90757121      -0.83400206        1.1992421 
  0.92502450      -0.86524539        1.1980580 
  0.94247780      -0.89691477        1.1961148 
  0.95993109      -0.92900836        1.1934013 
  0.97738438      -0.96152545        1.1899058 
  0.99483767      -0.99446662        1.1856167 
   1.0122910       -1.0278339        1.1805216 
   1.0297443       -1.0616312        1.1746080 
   1.0471975       -1.0958643        1.1678627 
   1.0646508       -1.1305413        1.1602720 
   1.0821041       -1.1656733        1.1518216 
   1.0995574       -1.2012746        1.1424963 
   1.1170107       -1.2373633        1.1322803 
   1.1344640       -1.2739624        1.1211564 
   1.1519173       -1.3111007        1.1091064 
   1.1693706       -1.3488138        1.0961105 
   1.1868239       -1.3871462        1.0821472 
   1.2042772       -1.4261532        1.0671926 
   1.2217305       -1.4659037        1.0512205 
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   1.2391838       -1.5064846        1.0342012 
   1.2566371       -1.5480058        1.0161009 
   1.2740903       -1.5906085       0.99688061 
   1.2915436       -1.6344765       0.97649452 
   1.3089969       -1.6798542       0.95488767 
   1.3264502       -1.7270747       0.93199262 
   1.3439035       -1.7766082       0.90772408 
   1.3613568       -1.8291483       0.88196996 
   1.3788101       -1.8857852       0.85457508 
   1.3962634       -1.9483987       0.82530731 
   1.4137167       -2.0207494       0.79377348 
   1.4311700       -2.1132177       0.75909882 
   1.4486233       -2.2875178       0.71674734 
   1.4660766      -0.57671990       0.16870011 
   1.4835299      -0.55434973       0.16075208 
   1.5009832      -0.53120905       0.15378854 
   1.5184364      -0.50747209       0.14770845 
   1.5358897      -0.48314117       0.14253714 
   1.5533430      -0.45821857       0.13830084 
   1.5707963      -0.43270667       0.13502674 
   1.5707963      -0.43266698       0.13501719 
   1.5533430      -0.45821527       0.13830003 
   1.5358897      -0.48313831       0.14253639 
   1.5184364      -0.50746965       0.14770776 
   1.5009832      -0.53120696       0.15378792 
   1.4835299      -0.55434796       0.16075152 
   1.4660766      -0.57689025       0.16857409 
   1.4486233      -0.59883148       0.17723195 
   1.4311700      -0.62016917       0.18670221 
   1.4137167      -0.64090084       0.19696273 
   1.3962634      -0.66102384       0.20799202 
   1.3788101      -0.68053548       0.21976931 
   1.3613568      -0.69943296       0.23227440 
   1.3439035      -0.71771337       0.24548772 
   1.3264502      -0.73537363       0.25939020 
   1.3089969      -0.75241062       0.27396335 
   1.2915436      -0.76882104       0.28918914 
   1.2740903      -0.78460149       0.30505004 
   1.2566371      -0.79974843       0.32152891 
   1.2391838      -0.81425819       0.33860906 
   1.2217305      -0.82812698       0.35627416 
   1.2042772      -0.84135089       0.37450828 
   1.1868239      -0.85392584       0.39329578 
   1.1693706      -0.86584766       0.41262139 
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   1.1519173      -0.87711207       0.43247013 
   1.1344640      -0.88771462       0.45282730 
   1.1170107      -0.89765076       0.47367846 
   1.0995574      -0.90691582       0.49500944 
   1.0821041      -0.91550501       0.51680633 
   1.0646508      -0.92341343       0.53905542 
   1.0471975      -0.93063604       0.56174321 
   1.0297443      -0.93716769       0.58485644 
   1.0122910      -0.94300316       0.60838206 
  0.99483767      -0.94813705       0.63230718 
  0.97738438      -0.95256388       0.65661912 
  0.95993109      -0.95627804       0.68130539 
  0.94247780      -0.95927383       0.70635370 
  0.92502450      -0.96154541       0.73175192 
  0.90757121      -0.96308681       0.75748813 
  0.89011792      -0.96389196       0.78355061 
  0.87266463      -0.96395464       0.80992782 
  0.85521133      -0.96326849       0.83660845 
  0.83775804      -0.96182703       0.86358142 
  0.82030475      -0.95962362       0.89083586 
  0.80285146      -0.95665143       0.91836119 
  0.78539816      -0.95290348       0.94614708 
  0.76794487      -0.94837259       0.97418352 
  0.75049158      -0.94305137        1.0024608 
  0.73303829      -0.93693221        1.0309697 
  0.71558499      -0.93000720        1.0597013 
  0.69813170      -0.92226821        1.0886471 
  0.68067841      -0.91370674        1.1177992 
  0.66322512      -0.90431396        1.1471504 
  0.64577182      -0.89408060        1.1766939 
  0.62831853      -0.88299697        1.2064238 
  0.61086524      -0.87105285        1.2363352 
  0.59341195      -0.85823740        1.2664240 
  0.57595865      -0.84453913        1.2966872 
  0.55850536      -0.82994574        1.3271233 
  0.54105207      -0.81444403        1.3577323 
  0.52359878      -0.79801975        1.3885159 
  0.50614548      -0.78065744        1.4194780 
  0.48869219      -0.76234016        1.4506248 
  0.47123890      -0.74304932        1.4819657 
  0.45378561      -0.72276431        1.5135134 
  0.43633231      -0.70146215        1.5452849 
  0.41887902      -0.67911698        1.5773024 
  0.40142573      -0.65569946        1.6095942 
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  0.38397244      -0.63117606        1.6421966 
  0.36651914      -0.60550797        1.6751555 
  0.34906585      -0.57864987        1.7085292 
  0.33161256      -0.55054811        1.7423922 
  0.31415927      -0.52113837        1.7768399 
  0.29670597      -0.49034223        1.8119958 
  0.27925268      -0.45806227        1.8480225 
  0.26179939      -0.42417476        1.8851377 
  0.24434610      -0.38851814        1.9236406 
  0.22689280      -0.35087392        1.9639559 
  0.20943951      -0.31093284        2.0067146 
  0.19198622      -0.26822884        2.0529145 
  0.17453293      -0.22199235        2.1042863 
  0.15707963      -0.17073312        2.1643744 
  0.13962634      -0.11064601        2.2427072 
  0.12217305       4.73122866E-03   0.62439373 
  0.10471976       6.77244703E-03   0.60095073 
  8.72664626E-02   7.68930383E-03   0.57710559 
  6.98131701E-02   7.60999253E-03   0.55293791 
  5.23598776E-02   6.51177769E-03   0.52845709 
  3.49065850E-02   4.37109710E-03   0.50367276 
  1.74532925E-02   1.16352861E-03   0.47859481 
   0.0000000      -3.13624507E-03   0.45323340 
POSTERIOR LINK 
ROTX (rad)        FX                FY 
  4.14762417E-07  -1.03590297E-10   8.31092147E-10 
  4.16918034E-07  -1.06284760E-10   7.88110742E-10 
  4.20321322E-07   1.16419659E-10  -8.43510450E-10 
  4.24171207E-07   1.05138429E-10  -8.45079124E-10 
  4.28276799E-07  -2.36527072E-10   1.64390138E-09 
  4.32568497E-07   1.26457928E-12   1.75841798E-13 
  4.37012983E-07   1.11480755E-10  -8.29994968E-10 
  4.41596322E-07  -1.48313694E-11   2.63421695E-11 
  4.46310565E-07   1.09795665E-10  -8.16027036E-10 
  4.51152099E-07  -2.11737686E-10   1.63314613E-09 
  1.74750786E-02  -5.08725134E-09   3.18856876E-08 
  3.49929066E-02  -5.94695857E-09   3.34431501E-08 
  5.25540019E-02  -6.90012012E-09   3.51042395E-08 
  7.01585608E-02  -8.22974336E-09   3.82613477E-08 
  8.78067967E-02  -9.03186141E-09   3.84402078E-08 
  0.10549894      -1.05264652E-08   4.15939279E-08 
  0.12323525      -1.17756891E-08   4.32158845E-08 
  0.14101598      -1.33242437E-08   4.58023841E-08 
  0.15884142      -1.47434502E-08   4.73178646E-08 
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  0.17671189      -1.67372681E-08   5.05309114E-08 
  0.19462770      -1.83293541E-08   5.21717638E-08 
  0.21258921      -2.00185711E-08   5.37786626E-08 
  0.23059678      -2.27204650E-08   5.77588800E-08 
  0.24865079      -2.48944730E-08   6.01429103E-08 
  0.26675165      -2.81434577E-08   6.45700814E-08 
  0.28489980      -3.09190516E-08   6.76934251E-08 
  0.30309566      -3.46401040E-08   7.21830625E-08 
  0.32133973      -3.75724014E-08   7.45728286E-08 
  0.33963248      -4.07827653E-08   7.74493924E-08 
  0.35797443      -4.58312915E-08   8.33032594E-08 
  0.37636611      -5.10724535E-08   8.88296990E-08 
  0.39480808      -5.67189356E-08   9.46764176E-08 
  0.41330092      -6.27278000E-08   1.00366837E-07 
  0.43184523      -6.84125974E-08   1.05024158E-07 
  0.45044163      -7.65807111E-08   1.12908459E-07 
  0.46909077      -8.38427106E-08   1.18664615E-07 
  0.48779331      -9.21669777E-08   1.25360335E-07 
  0.50654995      -1.01732241E-07   1.33078322E-07 
  0.52536140      -1.12851553E-07   1.41960354E-07 
  0.54422840      -1.24736479E-07   1.50877541E-07 
  0.56315170      -1.38005818E-07   1.60473966E-07 
  0.58213209      -1.52153354E-07   1.70360813E-07 
  0.60117037      -1.69568438E-07   1.82744179E-07 
  0.62026736      -1.88162362E-07   1.95151794E-07 
  0.63942391      -2.06965971E-07   2.06511679E-07 
  0.65864090      -2.30071205E-07   2.20924511E-07 
  0.67791920      -2.56260256E-07   2.36718966E-07 
  0.69725973      -2.84561125E-07   2.52804581E-07 
  0.71666341      -3.16024578E-07   2.69900963E-07 
  0.73613120      -3.52218503E-07   2.89117421E-07 
  0.75566405      -3.90943761E-07   3.08205395E-07 
  0.77526296      -4.35214506E-07   3.29522251E-07 
  0.79492892      -4.85301318E-07   3.52727662E-07 
  0.81466294      -5.40763760E-07   3.76864436E-07 
  0.83446606      -6.02798595E-07   4.02458208E-07 
  0.85433931      -6.74050314E-07   4.30962778E-07 
  0.87428374      -7.51247862E-07   4.59474432E-07 
  0.89430042      -8.39558802E-07   4.90497508E-07 
  0.91439041      -9.37366354E-07   5.22637162E-07 
  0.93455477      -1.04974239E-06   5.57767411E-07 
  0.95479459      -1.17195401E-06   5.92723721E-07 
  0.97511094      -1.31261858E-06   6.30685831E-07 
  0.99550489      -1.46921558E-06   6.69328522E-07 
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   1.0159775      -1.64448127E-06   7.08878688E-07 
   1.0365298      -1.84096817E-06   7.49113707E-07 
   1.0571629      -2.06205856E-06   7.89723539E-07 
   1.0778778      -2.30911789E-06   8.30126251E-07 
   1.0986754      -2.58627865E-06   8.69414058E-07 
   1.1195569      -2.89800145E-06   9.07272204E-07 
   1.1405230      -3.24163069E-06   9.40879881E-07 
   1.1615748      -3.62923346E-06   9.71189915E-07 
   1.1827132      -4.05938368E-06   9.94932782E-07 
   1.2039388      -4.54150554E-06   1.01146057E-06 
   1.2252527      -5.07357900E-06   1.01726875E-06 
   1.2466554      -5.66598723E-06   1.01060704E-06 
   1.2681476      -6.32192634E-06   9.88028431E-07 
   1.2897300      -7.04716257E-06   9.46420623E-07 
   1.3114030      -7.84815566E-06   8.81513754E-07 
   1.3331672      -8.72976617E-06   7.88983039E-07 
   1.3550228      -9.70260304E-06   6.63999172E-07 
   1.3769701      -1.07625402E-05   5.00105303E-07 
   1.3990092      -1.19201500E-05   2.91386339E-07 
   1.4211403      -1.31827123E-05   3.10895031E-08 
   1.4433632      -1.45493575E-05  -2.88168021E-07 
   1.4656777      -1.60298310E-05  -6.74683821E-07 
   1.4880835      -1.76191819E-05  -1.13636846E-06 
   1.5105800      -1.93263039E-05  -1.68256701E-06 
   1.5331667      -2.11479135E-05  -2.32219033E-06 
   1.5558428      -2.30912406E-05  -3.06545070E-06 
   1.5786073      -2.51643888E-05  -3.92373613E-06 
   1.6014591      -2.73952180E-05  -4.91285048E-06 
   1.6243969      -7.36181232E-10  -2.12467544E-10 
   1.6474193      -2.38266363E-09  -5.18788189E-10 
   1.6705246      -3.56291520E-05  -8.78645618E-06 
   1.6937103      -3.61645686E-05  -9.98972057E-06 
   1.7169750      -3.85147803E-05  -1.16072207E-05 
   1.7403162      -4.08468308E-05  -1.33549578E-05 
   1.7637314      -4.31349029E-05  -1.52269867E-05 
   1.7872181      -4.53493010E-05  -1.72135802E-05 
   1.8107733      -4.74532170E-05  -1.92996512E-05 
   1.8107733       8.06359272E-10   4.35563040E-10 
   1.7872181      -4.13113288E-05  -1.56931109E-05 
   1.7637314      -3.96171975E-05  -1.39969930E-05 
   1.7403162      -3.78015765E-05  -1.23707171E-05 
   1.7169750      -3.58945854E-05  -1.08284464E-05 
   1.6937103      -3.39233111E-05  -9.38111152E-06 
   1.6705246      -3.19185494E-05  -8.03730769E-06 
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   1.6474197      -2.99024403E-05  -6.80120927E-06 
   1.6243976      -2.78977847E-05  -5.67517681E-06 
   1.6014600      -2.59281419E-05  -4.65983709E-06 
   1.5786084      -2.40092611E-05  -3.75255196E-06 
   1.5558440      -2.21540199E-05  -2.94924520E-06 
   1.5331681      -2.03691295E-05  -2.24448743E-06 
   1.5105814      -1.86741586E-05  -1.63305484E-06 
   1.4880850      -1.70642763E-05  -1.10742278E-06 
   1.4656793      -1.55485035E-05  -6.60769804E-07 
   1.4433649      -1.41326189E-05  -2.85874870E-07 
   1.4211420      -1.28125947E-05   2.46985831E-08 
   1.3990110      -1.15884815E-05   2.78039676E-07 
   1.3769719      -1.04562528E-05   4.80854611E-07 
   1.3550247      -9.41597270E-06   6.39660385E-07 
   1.3331691      -8.46602003E-06   7.60778542E-07 
   1.3114050      -7.59502068E-06   8.48916227E-07 
   1.2897320      -6.80384664E-06   9.09744676E-07 
   1.2681497      -6.08599727E-06   9.47538841E-07 
   1.2466574      -5.43497185E-06   9.65918119E-07 
   1.2252548      -4.84837587E-06   9.68791726E-07 
   1.2039410      -4.31952076E-06   9.59052325E-07 
   1.1827153      -3.84463431E-06   9.39207348E-07 
   1.1615770      -3.41781742E-06   9.11804718E-07 
   1.1405252      -3.03687751E-06   8.78885842E-07 
   1.1195591      -2.69870864E-06   8.42481836E-07 
   1.0986777      -2.39213995E-06   8.01872019E-07 
   1.0778800      -2.11967658E-06   7.59929844E-07 
   1.0571651      -1.87988102E-06   7.18141619E-07 
   1.0365321      -1.66523889E-06   6.75705605E-07 
   1.0159798      -1.47449070E-06   6.33786165E-07 
  0.99550716      -1.30471062E-06   5.92689893E-07 
  0.97511322      -1.15333609E-06   5.52550978E-07 
  0.95479687      -1.02223384E-06   5.15471285E-07 
  0.93455705      -9.04038768E-07   4.78989811E-07 
  0.91439268      -7.99182246E-07   4.44363846E-07 
  0.89430270      -7.07212862E-07   4.12018162E-07 
  0.87428602      -6.25885454E-07   3.81589592E-07 
  0.85434158      -5.52546181E-07   3.52150264E-07 
  0.83446832      -4.88168474E-07   3.24774024E-07 
  0.81466519      -4.31993646E-07   3.00117864E-07 
  0.79493116      -3.83363621E-07   2.77572497E-07 
  0.77526519      -3.38215503E-07   2.55271020E-07 
  0.75566627      -2.99778880E-07   2.35657561E-07 
  0.73613340      -2.65747348E-07   2.17453732E-07 



www.manaraa.com

    

123 

Appendix II (Continued) 
   
  0.71666560      -2.34464185E-07   1.99459978E-07 
  0.69726190      -2.08466835E-07   1.84370744E-07 
  0.67792135      -1.83952469E-07   1.69303695E-07 
  0.65864303      -1.62206827E-07   1.55195387E-07 
  0.63942602      -1.43645950E-07   1.42767620E-07 
  0.62026945      -1.26662156E-07   1.30808351E-07 
  0.60117243      -1.12970323E-07   1.21289210E-07 
  0.58213413      -9.93648212E-08   1.10788646E-07 
  0.56315371      -8.71907857E-08   1.00957420E-07 
  0.54423038      -7.79921793E-08   9.38192826E-08 
  0.52536335      -7.01087904E-08   8.77331245E-08 
  0.50655187      -6.10875305E-08   7.96067981E-08 
  0.48779519      -5.38099820E-08   7.27375902E-08 
  0.46909261      -4.73315328E-08   6.64753522E-08 
  0.45044344      -4.15701943E-08   6.08042163E-08 
  0.43184699      -3.74674202E-08   5.70107299E-08 
  0.41330264      -3.32544575E-08   5.27598843E-08 
  0.39480976      -2.91313036E-08   4.81349651E-08 
  0.37636774      -2.59132607E-08   4.48412096E-08 
  0.35797601      -2.24924221E-08   4.06213356E-08 
  0.33963401      -2.05984129E-08   3.89202621E-08 
  0.32134121      -1.76991231E-08   3.48676539E-08 
  0.30309709      -1.45921288E-08   3.00940068E-08 
  0.28490116      -1.32133675E-08   2.85352336E-08 
  0.26675295      -1.17851906E-08   2.68157833E-08 
  0.24865202      -9.97614384E-09   2.37924154E-08 
  0.23059794      -9.02836419E-09   2.27840445E-08 
  0.21259029      -8.14118153E-09   2.18481453E-08 
  0.19462869      -6.14660881E-09   1.71525668E-08 
  0.17671278      -4.66600838E-09   1.38345413E-08 
  0.15884220      -2.36450556E-10   7.44723913E-10 
  0.14101660       1.53403203E-11   4.39759000E-12 
  0.12323525      -2.32018913E-10   8.09669424E-10 
  0.10549894      -3.56419321E-09   1.38678047E-08 
  8.78067967E-02  -2.94076450E-09   1.23316964E-08 
  7.01585608E-02  -2.81346042E-09   1.30400919E-08 
  5.25540019E-02  -1.97318858E-09   9.77909261E-09 
  3.49929066E-02  -2.03928196E-09   1.14398919E-08 
  1.74750786E-02  -1.20443953E-09   7.32510239E-09 
  3.39573733E-07  -1.06427490E-09   7.37626628E-09 
COMPLIANT LINK, L =    96.102983 
MZ                FX                FY 
   5.8959368       0.12273181       0.25367429 
   5.8959368       8.25794175E-02  -2.20957357E-02 
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   5.8959368       6.57280172E-02  -0.14105002 
   5.8959368       5.61188787E-02  -0.21184645 
   5.8959368       4.97954614E-02  -0.26050689 
   5.8959368       4.50273356E-02  -0.29645170 
   5.8959368       4.18012981E-02  -0.32553479 
   5.8959368       3.92950865E-02  -0.34943282 
   5.8959368       3.73187904E-02  -0.36970157 
   5.8959368       3.57448207E-02  -0.38731258 
   5.2817123      -1.16360698E-03  -0.47859513 
   4.5327583      -4.37110328E-03  -0.50367275 
   3.7955388      -6.51178398E-03  -0.52845708 
   3.0699153      -7.60999905E-03  -0.55293789 
   2.3557480      -7.68931040E-03  -0.57710557 
   1.6529045      -6.77245435E-03  -0.60095072 
  0.96125970      -4.88137600E-03  -0.62446415 
  0.28069578      -2.03726381E-03  -0.64763683 
 -0.38889782       1.73941754E-03  -0.67045988 
  -1.0476242       6.42889270E-03  -0.69292453 
  -1.6955793       1.20120449E-02  -0.71502215 
  -2.3328517       1.84703822E-02  -0.73674415 
  -2.9595227       2.57860092E-02  -0.75808203 
  -3.5756664       3.39415943E-02  -0.77902733 
  -4.1813498       4.29203439E-02  -0.79957165 
  -4.7766324       5.27059715E-02  -0.81970659 
  -5.3615668       6.32826742E-02  -0.83942379 
  -5.9361982       7.46351034E-02  -0.85871486 
  -6.5005648       8.67483445E-02  -0.87757145 
  -7.0546973       9.96078891E-02  -0.89598517 
  -7.5986197       0.11319962      -0.91394763 
  -8.1323482       0.12750977      -0.93145040 
  -8.6558922       0.14252495      -0.94848505 
  -9.1692536       0.15823206      -0.96504310 
  -9.6724268       0.17461833      -0.98111602 
  -10.165399       0.19167129      -0.99669528 
  -10.648150       0.20937874       -1.0117723 
  -11.120651       0.22772875       -1.0263384 
  -11.582867       0.24670963       -1.0403849 
  -12.034753       0.26630997       -1.0539031 
  -12.476258       0.28651855       -1.0668842 
  -12.907322       0.30732441       -1.0793194 
  -13.327875       0.32871679       -1.0911997 
  -13.737840       0.35068518       -1.1025163 
  -14.137130       0.37321924       -1.1132602 
  -14.525649       0.39630887       -1.1234223 
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  -14.903290       0.41994420       -1.1329934 
  -15.269938       0.44411553       -1.1419645 
  -15.625464       0.46881344       -1.1503263 
  -15.969731       0.49402869       -1.1580695 
  -16.302587       0.51975232       -1.1651847 
  -16.623868       0.54597561       -1.1716624 
  -16.933399       0.57269011       -1.1774933 
  -17.230987       0.59988767       -1.1826675 
  -17.516426       0.62756046       -1.1871756 
  -17.789492       0.65570099       -1.1910076 
  -18.049944       0.68430214       -1.1941537 
  -18.297521       0.71335725       -1.1966040 
  -18.531943       0.74286010       -1.1983482 
  -18.752903       0.77280500       -1.1993761 
  -18.960072       0.80318685       -1.1996772 
  -19.153094       0.83400123       -1.1992411 
  -19.331579       0.86524446       -1.1980569 
  -19.495107       0.89691372       -1.1961136 
  -19.643217       0.92900717       -1.1933999 
  -19.775409       0.96152411       -1.1899044 
  -19.891133       0.99446511       -1.1856151 
  -19.989787        1.0278322       -1.1805199 
  -20.070707        1.0616293       -1.1746061 
  -20.133160        1.0958621       -1.1678606 
  -20.176332        1.1305389       -1.1602698 
  -20.199319        1.1656706       -1.1518191 
  -20.201106        1.2012715       -1.1424937 
  -20.180552        1.2373598       -1.1322774 
  -20.136365        1.2739585       -1.1211533 
  -20.067077        1.3110963       -1.1091030 
  -19.970997        1.3488088       -1.0961068 
  -19.846175        1.3871406       -1.0821430 
  -19.690329        1.4261469       -1.0671881 
  -19.500769        1.4658966       -1.0512155 
  -19.274279        1.5064766       -1.0341957 
  -19.006965        1.5479967       -1.0160947 
  -18.694029        1.5905980      -0.99687366 
  -18.329444        1.6344644      -0.97648644 
  -17.905460        1.6798399      -0.95487793 
  -17.411809        1.7270574      -0.93198018 
  -16.834386        1.7765859      -0.90770680 
  -16.152846        1.8291169      -0.88194284 
  -15.335871        1.8857339      -0.85452485 
  -14.330426        1.9482930      -0.82519101 
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  -13.032101        2.0204384      -0.79340264 
  -11.155889        2.1132167      -0.75909681 
  -9.0192968        2.2874484      -0.71665331 
  -1.6532915       0.57681237      -0.16853089 
  -2.3557479       0.55432110      -0.16074229 
  -3.0699154       0.53117826      -0.15377864 
  -3.7955388       0.50743909      -0.14769851 
  -4.5327582       0.48310592      -0.14252724 
  -5.2817206       0.45818110      -0.13829107 
  -6.0425807       0.43266697      -0.13501718 
  -6.0425808       0.43266698      -0.13501719 
  -5.2817206       0.45818110      -0.13829107 
  -4.5327582       0.48310592      -0.14252724 
  -3.7955388       0.50743909      -0.14769851 
  -3.0699154       0.53117826      -0.15377864 
  -2.3557478       0.55432111      -0.16074229 
  -1.6529045       0.57686523      -0.16856495 
 -0.96125978       0.59880825      -0.17722298 
 -0.28069594       0.62014769      -0.18669345 
  0.38889793       0.64088104      -0.19695423 
   1.0476242       0.66100565      -0.20798382 
   1.6955792       0.68051883      -0.21976143 
   2.3328515       0.69941776      -0.23226686 
   2.9595228       0.71769952      -0.24548053 
   3.5756665       0.73536106      -0.25938338 
   4.1813497       0.75239923      -0.27395691 
   4.7766323       0.76881075      -0.28918308 
   5.3615669       0.78459221      -0.30504435 
   5.9361982       0.79974008      -0.32152359 
   6.5005647       0.81425070      -0.33860408 
   7.0546972       0.82812026      -0.35626953 
   7.5986198       0.84134488      -0.37450398 
   8.1323483       0.85392047      -0.39329179 
   8.6558922       0.86584288      -0.41261770 
   9.1692535       0.87710780      -0.43246672 
   9.6724269       0.88771082      -0.45282416 
   10.165399       0.89764739      -0.47367557 
   10.648150       0.90691283      -0.49500679 
   11.120651       0.91550236      -0.51680389 
   11.582867       0.92341108      -0.53905318 
   12.034753       0.93063396      -0.56174117 
   12.476258       0.93716586      -0.58485458 
   12.907321       0.94300154      -0.60838035 
   13.327875       0.94813562      -0.63230562 
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   13.737840       0.95256262      -0.65661771 
   14.137130       0.95627695      -0.68130411 
   14.525649       0.95927287      -0.70635253 
   14.903290       0.96154457      -0.73175086 
   15.269938       0.96308608      -0.75748717 
   15.625464       0.96389132      -0.78354974 
   15.969731       0.96395408      -0.80992704 
   16.302587       0.96326801      -0.83660775 
   16.623868       0.96182662      -0.86358078 
   16.933399       0.95962326      -0.89083529 
   17.230987       0.95665113      -0.91836068 
   17.516426       0.95290322      -0.94614663 
   17.789492       0.94837238      -0.97418312 
   18.049944       0.94305120       -1.0024605 
   18.297521       0.93693206       -1.0309694 
   18.531943       0.93000710       -1.0597010 
   18.752903       0.92226813       -1.0886469 
   18.960072       0.91370668       -1.1177990 
   19.153094       0.90431392       -1.1471502 
   19.331579       0.89408058       -1.1766938 
   19.495107       0.88299697       -1.2064237 
   19.643217       0.87105286       -1.2363352 
   19.775409       0.85823743       -1.2664239 
   19.891133       0.84453917       -1.2966872 
   19.989787       0.82994579       -1.3271233 
   20.070707       0.81444409       -1.3577324 
   20.133160       0.79801982       -1.3885160 
   20.176332       0.78065751       -1.4194781 
   20.199319       0.76234023       -1.4506249 
   20.201106       0.74304939       -1.4819658 
   20.180552       0.72276439       -1.5135135 
   20.136365       0.70146221       -1.5452850 
   20.067077       0.67911702       -1.5773024 
   19.970997       0.65569948       -1.6095942 
   19.846175       0.63117604       -1.6421965 
   19.690329       0.60550789       -1.6751554 
   19.500769       0.57864970       -1.7085290 
   19.274279       0.55054781       -1.7423918 
   19.006965       0.52113786       -1.7768392 
   18.694029       0.49034138       -1.8119946 
   18.329445       0.45806087       -1.8480205 
   17.905460       0.42417244       -1.8851343 
   17.411809       0.38851414       -1.9236348 
   16.834386       0.35086669       -1.9639453 
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   16.152847       0.31091875       -2.0066940 
   15.335871       0.26819827       -2.0528696 
   14.330426       0.22191417       -2.1041715 
   13.030323       0.17073315       -2.1643746 
   11.155582       0.11064468       -2.2427060 
  0.96163888      -4.89963670E-03  -0.62440516 
   1.6529045      -6.77245572E-03  -0.60095072 
   2.3557480      -7.68931150E-03  -0.57710557 
   3.0699153      -7.60999988E-03  -0.55293789 
   3.7955388      -6.51178452E-03  -0.52845707 
   4.5327583      -4.37110352E-03  -0.50367275 
   5.2817208      -1.16353473E-03  -0.47859479 
   6.0425805       3.13623875E-03  -0.45323340 
Max Stress 
   6.1251658 
   7.7995846 
   9.1967479 
   10.386807 
   11.462996 
   12.454655 
   13.371542 
   14.229913 
   15.029086 
   15.803786 
   14.017332 
   14.037438 
   14.093132 
   14.144231 
   14.239578 
   14.331166 
   14.428180 
   14.556667 
   14.681731 
   14.803323 
   14.949454 
   15.105262 
   15.258134 
   15.408012 
   15.559058 
   15.739972 
   15.918394 
   16.094262 
   16.267512 
   16.438081 
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   16.606119 
   16.804978 
   17.001622 
   17.195985 
   17.388001 
   17.577605 
   17.764731 
   17.949315 
   18.131290 
   18.330078 
   18.538316 
   18.744389 
   18.948229 
   19.149772 
   19.348948 
   19.545689 
   19.739925 
   19.931585 
   20.120597 
   20.306885 
   20.490374 
   20.700464 
   20.909066 
   21.115349 
   21.319241 
   21.520667 
   21.719550 
   21.915809 
   22.109361 
   22.300120 
   22.487994 
   22.672890 
   22.854705 
   23.033336 
   23.208669 
   23.380586 
   23.579214 
   23.796170 
   23.995157 
   24.175361 
   24.342269 
   24.529522 
   24.713642 
   24.894495 
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   25.071937 
   25.245810 
   25.415938 
   25.582126 
   25.744154 
   25.925583 
   26.098868 
   26.244099 
   26.357657 
   26.549890 
   26.756104 
   26.927398 
   27.073487 
   27.255062 
   27.435807 
   27.617228 
   27.803307 
   28.046970 
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Appendix III:  Matlab Code for Plotting Flexion and Extension Moments 
 
clf 
for index = 0:30 
    filename = ['index',num2str(index),'.txt'] 
    string1  = 'C:\DOCUME~1\aroetter\ANSYS_~1\';   % Directory 
    fid1     = fopen([string1,filename]);          % opens the file 
    ABT      = fread(fid1);                        % reads the file into variable ABT in machine 
code 
    fclose(fid1);                                  % closes the data file 
    GBT      = native2unicode(ABT)';               % changes data from machine code to text 
and writes it to GBT 
    header_begin = findstr('FY', GBT);                % finds end of first header 
    anterior_end = findstr('POSTERIOR', GBT);  
    posterior_end = findstr('COMPLIANT', GBT); 
    compliant_end = length(GBT); 
    ANTERIOR     = str2num(GBT(header_begin(1)+3:anterior_end-1));   % turns the 
data into a numerical matrix 
    POSTERIOR    = str2num(GBT(header_begin(2)+3:posterior_end-1)); 
    COMPLIANT    = str2num(GBT(header_begin(3)+3:compliant_end)); 
    
 
 
    h=figure(1) 
    h1=plot(ANTERIOR(:,1)*180/pi,COMPLIANT(:,1),'*-') 
    hold on 
    h4 =gca 
    set(h4,'FontSize',12) 
    axis([0 90 -15 15]) % low x high x, low y high y 
    %grid on 
    h2=xlabel('Knee Angle (deg)') 
    set(h2,'FontSize',12) 
    h3=ylabel('BCEA Moment (N-m)')  
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set(h3,'FontSize',12) 
     
 
     h=figure(2) 
    h1=plot(ANTERIOR(101:191,1)*180/pi,COMPLIANT(101:191,1),'*-') 
    hold on 
    h4 =gca 
    set(h4,'FontSize',12) 
    axis([0 90 -15 15]) % low x high x, low y high y 
    %grid on 
    h2=xlabel('Knee Angle (deg)') 
    set(h2,'FontSize',12) 
    h3=ylabel('BCEA Moment (N-m)')  
    set(h3,'FontSize',12) 
end 
 %print BCEAMomentall -dtiff -r600 
 
% MATLAB Code for Extension Data Graphing 
 
clf 
for index = 25:30 
    filename = ['index',num2str(index),'.txt'] 
    string1  = 'C:\DOCUME~1\aroetter\ANSYS_~1\Loadin~1\';   % Directory 
    fid1     = fopen([string1,filename]);          % opens the file 
    ABT      = fread(fid1);                        % reads the file into variable ABT in machine 
code 
    fclose(fid1);                                  % closes the data file 
    GBT      = native2unicode(ABT)';               % changes data from machine code to text 
and writes it to GBT 
    header_begin = findstr('FY', GBT);                % finds end of first header 
    anterior_end = findstr('POSTERIOR', GBT);  
    posterior_end = findstr('COMPLIANT', GBT); 
    compliant_end = length(GBT); 
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  ANTERIOR     = str2num(GBT(header_begin(1)+3:anterior_end-1));   % turns the data 
into a numerical matrix 
    POSTERIOR    = str2num(GBT(header_begin(2)+3:posterior_end-1)); 
    COMPLIANT    = str2num(GBT(header_begin(3)+3:compliant_end)); 
    
    h=figure(1) 
    h1=plot(ANTERIOR(:,1)*180/pi,COMPLIANT(:,1),'*-') 
    hold on 
    h4 =gca 
    set(h4,'FontSize',12) 
    axis([0 90 -15 5]) % low x high x, low y high y 
    h2=xlabel('Knee Angle (deg)') 
    set(h2,'FontSize',12) 
    h3=ylabel('BCEA Moment (N-m)')  
    set(h3,'FontSize',12) 
end 
 %print BCEAMomentall -dtiff -r600 
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Appendix IV:  Matlab Code for Plotting Reaction Forces 
 
 
clf 
index = 30 
    filename = ['index',num2str(index),'.txt'] 
    string1  = 'C:\DOCUME~1\aroetter\ANSYS_~1\';   % Directory 
    fid1     = fopen([string1,filename]);          % opens the file 
    ABT      = fread(fid1);                        % reads the file into variable ABT in machine 
code 
    fclose(fid1);                                  % closes the data file 
    GBT      = native2unicode(ABT)';               % changes data from machine code to text 
and writes it to GBT 
    header_begin = findstr('FY', GBT);                % finds end of first header 
    anterior_end = findstr('POSTERIOR', GBT);  
    posterior_end = findstr('COMPLIANT', GBT); 
    compliant_end = length(GBT); 
    ANTERIOR       = str2num(GBT(header_begin(1)+3:anterior_end-1));   % turns the  
 
data into a numerical matrix 
    %ANTERIORFX    = str2num(GBT(header_begin(1)+19:anterior_end-1)); 
    %ANTERIORFY    = str2num(GBT(header_begin(1)+36:anterior_end-1)); 
    POSTERIOR   = str2num(GBT(header_begin(2)+3:posterior_end-1)); 
    %POSTERIORFY   = str2num(GBT(header_begin(2)+36:posterior_end-1)); 
     
    ANTERIOR_MAG = (ANTERIOR(10:100,2).^2+ANTERIOR(10:100,3).^2).^0.5; 
    ANTERIOR_ANG = atan2(ANTERIOR(10:100,3),ANTERIOR(10:100,2))*180/pi; 
     
    POSTERIOR_MAG = (POSTERIOR(10:100,2).^2+POSTERIOR(10:100,3).^2).^0.5; 
    POSTERIOR_ANG = atan2(POSTERIOR(10:100,3),POSTERIOR(10:100,2))*180/pi; 
     
 
    h=figure(1) 
    h1=plot(ANTERIOR(10:100,1)*180/pi,ANTERIOR(10:100,2),'*-')               
    hold on 
    h4 =gca 
    set(h4,'FontSize',12) 
    %axis([0 90 -15 15]) % low x high x, low y high y 
    %grid on 
    h2=xlabel('Knee Angle (deg)') 
    set(h2,'FontSize',12) 
    h3=ylabel('Fx-Anterior (N)')  
    set(h3,'FontSize',12) 



www.manaraa.com

    

135 

Appendix IV (Continued) 
     
    h=figure(2) 
    h1=plot(ANTERIOR(10:100,1)*180/pi,ANTERIOR(10:100,3),'*-')               
    hold on 
    h4 =gca 
    set(h4,'FontSize',12) 
    %axis([0 90 -15 15]) % low x high x, low y high y 
    %grid on 
    h2=xlabel('Knee Angle (deg)') 
    set(h2,'FontSize',12) 
    h3=ylabel('Fy-Anterior (N)')  
    set(h3,'FontSize',12)     
     
    h=figure(3) 
    h1=plot(ANTERIOR_ANG,ANTERIOR_MAG,'*-')               
    hold on 
    h4 =gca 
    set(h4,'FontSize',12) 
    %axis([0 90 -15 15]) % low x high x, low y high y 
    %grid on 
    h2=xlabel('Direction (deg)') 
    set(h2,'FontSize',12) 
    h3=ylabel('|F|-Anterior (N)')  
    set(h3,'FontSize',12) 
     
    h=figure(4) 
    h1=plot(ANTERIOR(10:100,1)*180/pi,ANTERIOR_MAG,'*-')               
    hold on 
    h4 =gca 
    set(h4,'FontSize',12) 
    %axis([0 90 -15 15]) % low x high x, low y high y 
    %grid on 
    h2=xlabel('Knee Angle (deg)') 
    set(h2,'FontSize',12) 
    h3=ylabel('|F|-Anterior (N)')  
    set(h3,'FontSize',12) 
  
     
     
     
    h=figure(5) 
    h1=plot(ANTERIOR(10:100,1)*180/pi,POSTERIOR(10:100,2),'*-')               
    hold on 
    h4 =gca 
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   set(h4,'FontSize',12) 
    %axis([0 90 -15 15]) % low x high x, low y high y 
    %grid on 
    h2=xlabel('Knee Angle (deg)') 
    set(h2,'FontSize',12) 
    h3=ylabel('Fx-Posterior (N)')  
    set(h3,'FontSize',12) 
     
    h=figure(6) 
    h1=plot(ANTERIOR(10:100,1)*180/pi,POSTERIOR(10:100,3),'*-')               
    hold on 
    h4 =gca 
    set(h4,'FontSize',12) 
    %axis([0 90 -15 15]) % low x high x, low y high y 
    %grid on 
    h2=xlabel('Knee Angle (deg)') 
    set(h2,'FontSize',12) 
    h3=ylabel('Fy-Posterior (N)')  
    set(h3,'FontSize',12)     
     
    h=figure(7) 
    h1=plot(POSTERIOR_ANG,POSTERIOR_MAG,'*-')               
    hold on 
    h4 =gca 
    set(h4,'FontSize',12) 
    %axis([0 90 -15 15]) % low x high x, low y high y 
    %grid on 
    h2=xlabel('Direction (deg)') 
    set(h2,'FontSize',12) 
    h3=ylabel('|F|-Posterior (N)')  
    set(h3,'FontSize',12) 
     
    h=figure(8) 
    h1=plot(ANTERIOR(10:100,1)*180/pi,POSTERIOR_MAG,'*-')               
    hold on 
    h4 =gca 
    set(h4,'FontSize',12) 
    %axis([0 90 -15 15]) % low x high x, low y high y 
    %grid on 
    h2=xlabel('Knee Angle (deg)') 
    set(h2,'FontSize',12) 
    h3=ylabel('|F|-Posterior (N)')  
    set(h3,'FontSize',12) 
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    h=figure(9) 
    h1=plot(ANTERIOR(10:100,1)*180/pi,POSTERIOR_MAG,'.-')               
    hold on 
    h4 =gca 
    set(h4,'FontSize',12) 
    %axis([0 90 -15 15]) % low x high x, low y high y 
    %grid on 
    h2=xlabel('Knee Angle (deg)') 
    set(h2,'FontSize',12) 
    h3=ylabel('|F| (N)')  
    set(h3,'FontSize',12) 
    h5=plot(ANTERIOR(10:100,1)*180/pi,ANTERIOR_MAG,'k+-')  
     
  
 %print BCEAMomentall -dtiff -r600 
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Appendix V:  Reaction Force Plots  
 
 
 
 

 
Figure A-1. Anterior Force in x-Direction vs. Knee Angle 

 
Figure A-2. Anterior Force in y-Direction vs. Knee Angle 
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Figure A-3. Magnitude of Anterior Force vs. Knee Angle 

 
Figure A-4. Magnitude of Anterior Force vs. Direction 



www.manaraa.com

    

140 

Appendix V (Continued) 

 
Figure A-5. Posterior Force in x-Direction vs. Knee Angle 

 
Figure A-6. Posterior Force in y-Direction vs. Knee Angle 
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Appendix V (Continued) 

 
Figure A-7. Magnitude of Posterior Force vs. Knee Angle 

 
Figure A-8. Magnitude of Posterior Force vs. Direction 
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Appendix VI:  COSMOSWorks Report File – Socket and Knee 
 

Stress analysis of Residuum and Knee with BCEA Loads during Flexion 
Author: Adam D. Roetter 

 
Introduction 
File Information 
Materials 
Load & Restraint Information 
Study Property 
Contact 
Results 
Appendix 
 
 

 
 
 
1. Introduction 
 
 
Summarize the FEM analysis on Top Half of Leg with Knee Bracket for Moment 
Application 
Note: 
Do not base your design decisions solely on the data presented in this report. Use this 
information in conjunction with experimental data and practical experience. Field testing 
is mandatory to validate your final design. COSMOSWorks helps you reduce your time-
to-market by reducing but not eliminating field tests.  
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2. File Information 
 

Model 
name: 

Top Half of Leg with Knee Bracket for Moment 
Application 

Model 
location: 

C:\Users\Adam\Documents\SolidWorks Thesis\Top half of 
System (Residuum Stresses)\Top Half of Leg with Knee 
Bracket for Moment Application.SLDASM 

Results 
location: 

c:\users\adam\appdata\local\temp 

Study 
name: 

Moment Application Xdeg of Rotation (-Default-) 

 

 
3. Materials 
 

No. Part Name Material Mass Volume 

1 
Disartic Knee Top 
Link Bracket With 
Socket Attachment-1 

[SW]Titanium 
0.151837 
kg 

3.30081e-005 
m^3 

2 Residuum-1 [SW]Rubber 
8.65506 
kg 

0.00865506 
m^3 

3 
Socket to fit top link 
with bracket-1 

[SW]PE 
Low/Medium 
Density 

0.536364 
kg 

0.000584911 
m^3 
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4. Load & Restraint Information 

Restraint 

Restraint-1 
<Residuum-1> 

on 1 Face(s) fixed. 

Description:  

 

Load 

Force-1 <Disartic 
Knee Top Link 
Bracket With 
Socket Attachment-
1> 

on 1 Face(s) apply force -20.201 N along 
circumferential. with respect to selected reference 
Face< 1 > using uniform distribution 

Force-2 <Disartic 
Knee Top Link 
Bracket With 
Socket Attachment-
1> 

on 1 Edge(s) apply force -1.2013 N normal to 
reference plane with respect to selected reference 
Edge< 1 > using uniform distribution 

Force-3 <Disartic 
Knee Top Link 
Bracket With 
Socket Attachment-
1> 

on 1 Edge(s) apply force -4.0594e-006 N normal 
to reference plane with respect to selected 
reference Edge< 1 > using uniform distribution 

Force-4 <Disartic 
Knee Top Link 
Bracket With 
Socket Attachment-
1> 

on 1 Edge(s) apply force 1.1425 N normal to 
reference plane with respect to selected reference 
Top Plane using uniform distribution 
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5. Study Property 
 

Mesh Information 

Mesh Type: Solid mesh 

Mesher Used:  Standard 

Automatic Transition:  On 

Smooth Surface:  On 

Jacobian Check:  4 Points  

Element Size: 1.0754 in 

Tolerance: 0.053772 in 

Quality: High 

Number of elements: 13803 

Number of nodes: 22393 

Time to complete mesh(hh;mm;ss):  00:00:14 

Computer name:  INTELC2D 

 

Solver Information 

Quality: High 

Solver Type: FFEPlus 

Option: Include Thermal Effects 

Thermal Option: Input Temperature 

Thermal Option: Reference Temperature at zero strain: 298 Kelvin 
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6. Contact 
 
Contact state: Touching faces - Bonded 
7. Results 
7a. Stress2 (von Mises) 

 
7a. Strain1 (-Equivalent-) 
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7b. Default Results 
 

Name Type Min Location Max Location 

Stress2 
VON: von 
Mises 
stress 

2.49959 
N/m^2 

Node: 
12454  

(0.295982 
in, 

0.127197 
in, 

1.62194 
in)  

3.91105e+006 
N/m^2 

Node: 2652  

(1.13819 
in, 

-0.945371 
in, 

0.071128 
in)  

Strain1 
ESTRN: 
Equivalent 
strain 

1.03548e-
008  

Node: 
5103  

(0.946526 
in, 

-2.36945 
in, 

0.071128 
in)  

0.00115734 

Node: 21022  

(0.941113 
in, 

-1.36445 
in, 

2.35248 
in)  

 
 
 
 

 
8. Appendix 
 

Material name: [SW]Titanium 

Description:  

Material Source: Used SolidWorks material 

Material Library Name: SolidWorks Materials 

Material Model Type: Linear Elastic Isotropic 
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Property Name Value Units Value Type 

Elastic modulus 1.1e+011 N/m^2 Constant 

Poisson's ratio 0.3 NA Constant 

Shear modulus 4.3e+010 N/m^2 Constant 

Mass density 4600 kg/m^3 Constant 

Tensile strength 2.35e+008 N/m^2 Constant 

Yield strength 1.4e+008 N/m^2 Constant 

Thermal expansion coefficient 9e-006 /Kelvin Constant 

Thermal conductivity 22 W/(m.K) Constant 

Specific heat 460 J/(kg.K) Constant 

 

Material name: [SW]Rubber 

Description:  

Material Source: Used SolidWorks material 

Material Library Name: solidworks materials 

Material Model Type: Linear Elastic Isotropic 

 

Property Name Value Units Value Type 

Elastic modulus 6.1e+006 N/m^2 Constant 

Poisson's ratio 0.49 NA Constant 

Shear modulus 2.9e+006 N/m^2 Constant 

Mass density 1000 kg/m^3 Constant 

Tensile strength 1.3787e+007 N/m^2 Constant 

Yield strength 9.2374e+006 N/m^2 Constant 

Thermal expansion coefficient 0.00067 /Kelvin Constant 

Thermal conductivity 0.14 W/(m.K) Constant 
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Appendix VI (Continued) 
 

Material name: [SW]PE Low/Medium Density 

Description:  

Material Source: Used SolidWorks material 

Material Library Name: solidworks materials 

Material Model Type: Linear Elastic Isotropic 

 

Property Name Value Units Value Type 

Elastic modulus 1.72e+008 N/m^2 Constant 

Poisson's ratio 0.439 NA Constant 

Shear modulus 5.94e+007 N/m^2 Constant 

Mass density 917 kg/m^3 Constant 

Tensile strength 1.327e+007 N/m^2 Constant 

Thermal conductivity 0.322 W/(m.K) Constant 

Specific heat 1842 J/(kg.K) Constant 
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